PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Renin Inhibition and AT1R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling 
Objective
Strategies that block angiotensin II actions on its angiotensin type 1 receptor or inhibit actions of aldosterone have been shown to reduce myocardial hypertrophy and interstitial fibrosis in states of insulin resistance. Thereby, we sought to determine if combination of direct renin inhibition with angiotensin type 1 receptor blockade in vivo, through greater reductions in systolic blood pressure (SBP) and aldosterone would attenuate left ventricular hypertrophy and interstitial fibrosis to a greater extent than either intervention alone.
Materials/Methods
We utilized the transgenic Ren2 rat which manifests increased tissue expression of murine renin which, in turn, results in increased renin-angiotensin system activity, aldosterone secretion and insulin resistance. Ren2 rats were treated with aliskiren, valsartan, the combination (aliskiren+valsartan), or vehicle for 21 days.
Results
Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic blood pressure, elevated serum aldosterone levels, cardiac tissue hypertrophy, interstitial fibrosis and ultrastructural remodeling. These biochemical and functional alterations were accompanied by increases in the NADPH oxidase subunit Nox2 and 3-nitrotyrosine content along with increases in mammalian target of rapamycin and reductions in protein kinase B phosphorylation. Combination therapy contributed to greater reductions in systolic blood pressure and serum aldosterone but did not result in greater improvement in metabolic signaling or markers of oxidative stress, fibrosis or hypertrophy beyond either intervention alone.
Conclusions
Thereby, our data suggest that the greater impact of combination therapy on reductions in aldosterone does not translate into greater reductions in myocardial fibrosis or hypertrophy in this transgenic model of tissue renin overexpression.
doi:10.1016/j.metabol.2012.12.012
PMCID: PMC3640616  PMID: 23352204
Direct Renin Inhibition; Angiotensin II Type 1 receptor; Echocardiography; Ren2 rat
2.  Over-nutrition and Metabolic Cardiomyopathy 
Cardiovascular disease, which accounts for the highest morbidity and mortality in the United States, has several major risk factors, including aging and diabetes. Overweight and obesity, especially abdominal obesity, have been increasingly implicated as independent risk factors in the development of cardiovascular disease. Metabolic and/or diabetic cardiomyopathy has been especially associated with excess body weight caused by chronic over-nutrition and high-fat feeding. In the initial stages, obesity is now understood to cause significant dysregulation of cardiac fatty acid and glucose metabolism. These abnormalities are due, in part, to increased oxidative stress, which in turn can cause deleterious effects on intracellular signaling pathways that control cellular growth and proliferation. This increase in oxidative stress is coupled with reduced anti-oxidant species and dysregulation of metabolic signaling pathways. The cardiomyopathy seen with obesity is associated with increased interstitial fibrosis and diastolic dysfunction. Over time, evolving abnormalities include hypertrophy and systolic dysfunction, eventually leading to heart failure.
doi:10.1016/j.metabol.2012.02.013
PMCID: PMC3393834  PMID: 22465089
insulin; metabolic; signaling; heart
3.  The β-blocker Nebivolol Is a GRK/β-arrestin Biased Agonist 
PLoS ONE  2013;8(8):e71980.
Nebivolol, a third generation β-adrenoceptor (β-AR) antagonist (β-blocker), causes vasodilation by inducing nitric oxide (NO) production. The mechanism via which nebivolol induces NO production remains unknown, resulting in the genesis of much of the controversy regarding the pharmacological action of nebivolol. Carvedilol is another β-blocker that induces NO production. A prominent pharmacological mechanism of carvedilol is biased agonism that is independent of Gαs and involves G protein-coupled receptor kinase (GRK)/β-arrestin signaling with downstream activation of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK). Due to the pharmacological similarities between nebivolol and carvedilol, we hypothesized that nebivolol is also a GRK/β-arrestin biased agonist. We tested this hypothesis utilizing mouse embryonic fibroblasts (MEFs) that solely express β2-ARs, and HL-1 cardiac myocytes that express β1- and β2-ARs and no detectable β3-ARs. We confirmed previous reports that nebivolol does not significantly alter cAMP levels and thus is not a classical agonist. Moreover, in both cell types, nebivolol induced rapid internalization of β-ARs indicating that nebivolol is also not a classical β-blocker. Furthermore, nebivolol treatment resulted in a time-dependent phosphorylation of ERK that was indistinguishable from carvedilol and similar in duration, but not amplitude, to isoproterenol. Nebivolol-mediated phosphorylation of ERK was sensitive to propranolol (non-selective β-AR-blocker), AG1478 (EGFR inhibitor), indicating that the signaling emanates from β-ARs and involves the EGFR. Furthermore, in MEFs, nebivolol-mediated phosphorylation of ERK was sensitive to pharmacological inhibition of GRK2 as well as siRNA knockdown of β-arrestin 1/2. Additionally, nebivolol induced redistribution of β-arrestin 2 from a diffuse staining pattern into more intense punctate spots. We conclude that nebivolol is a β2-AR, and likely β1-AR, GRK/β-arrestin biased agonist, which suggests that some of the unique clinically beneficial effects of nebivolol may be due to biased agonism at β1- and/or β2-ARs.
doi:10.1371/journal.pone.0071980
PMCID: PMC3748024  PMID: 23977191
4.  Combination Direct Renin Inhibition with Angiotensin Type 1 Receptor Blockade improves Aldosterone but does not improve Kidney Injury in the Transgenic Ren2 rat 
Regulatory Peptides  2012;176(1-3):36-44.
Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT1R) blockade. This is important as, even with contemporary use of AT1R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination direct renin inhibition with AT1R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT1R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21 days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP and serum aldosterone, but did not result in greater improvement in markers of glomerular and tubular injury (ie. β-NAG) compared to either intervention alone. Further, combination therapy did not improve markers of oxidative stress and podocyte and proximal tubule integrity in this transgenic model of RAAS-mediated kidney damage despite greater reductions in serum aldosterone and BP levels.
doi:10.1016/j.regpep.2012.03.002
PMCID: PMC3348429  PMID: 22465166
Aldosterone; Combination; Renin inhibition; AT1R blockade; Podocyte; β-NAG; Oxidative Stress
5.  Mineralocorticoid Receptor-Dependent Proximal Tubule Injury Is Mediated by a Redox-Sensitive mTOR/S6K1 Pathway 
American Journal of Nephrology  2011;35(1):90-100.
Background/Aims
The mammalian target of rapamycin (mTOR) is a serine kinase that regulates phosphorylation (p) of its target ribosomal S6 kinase (S6K1), whose activation can lead to glomerular and proximal tubular cell (PTC) injury and associated proteinuria. Increased mTOR/S6K1 signaling regulates signaling pathways that target fibrosis through adherens junctions. Recent data indicate aldosterone signaling through the mineralocorticoid receptor (MR) can activate the mTOR pathway. Further, antagonism of the MR has beneficial effects on proteinuria that occur independent of hemodynamics.
Methods
Accordingly, hypertensive transgenic TG(mRen2)27 (Ren2) rats, with elevated serum aldosterone and proteinuria, and age-matched Sprague-Dawley rats were treated with either a low dose (1 mg/kg/day) or a conventional dose (30 mg/kg/day) of spironolactone (MR antagonist) or placebo for 3 weeks.
Results
Ren2 rats displayed increases in urine levels of the PTC brush border lysosomal enzyme N-acetyl-β-aminoglycosidase (β-NAG) in conjunction with reductions in PTC megalin, the apical membrane adherens protein T-cadherin and basolateral α-(E)-catenin, and fibrosis. In concert with these abnormalities, Ren2 renal cortical tissue also displayed increased Ser2448 (p)/activation of mTOR and Thr389 (p)-S6K1 and increased 3-nitrotyrosine (3-NT) content, a marker for peroxynitrite. Low-dose spironolactone had no effect on blood pressure but decreased proteinuria and β-NAG comparable to a conventional dose of this MR antagonist. Both doses of spironolactone attenuated ultrastructural maladaptive alterations and led to comparable reductions in (p)-mTOR/(p)-S6K1, 3-NT, fibrosis, and increased expression of α-(E)-catenin, T- and N-cadherin.
Conclusions
Thereby, MR antagonism improves proximal tubule integrity by targeting mTOR/S6K1 signaling and redox status independent of changes in blood pressure.
doi:10.1159/000335079
PMCID: PMC3316484  PMID: 22205374
Cadherin; Megalin; β-NAG; Proteinuria
6.  Nebivolol Improves Insulin Sensitivity in the TGR(Ren2)27 Rat 
Metabolism: clinical and experimental  2011;60(12):1757-1766.
Objective
Hypertension is often associated with increased oxidative stress and systemic insulin resistance. Use of β adrenergic receptor blockers in hypertension is limited due to potential negative influence on insulin sensitivity and glucose homeostasis. We sought to determine the impact of nebivolol, a selective vasodilatory β1adrenergic blocker, on whole-body insulin sensitivity, skeletal muscle oxidative stress, insulin signaling and glucose transport in the transgenic TG(mRen2)27rat (Ren2). This rodent model manifests increased tissue renin angiotensin expression, excess oxidative stress, and whole-body insulin resistance.
Research design and methods
Young (age 6-9 wks) Ren2 and age-matched Sprague-Dawley control rats were treated with nebivolol 10 mg/kg/day or placebo for 21 days. Basal measurements were obtained for glucose and insulin to calculate the Homeostasis Model Assessment (HOMA–IR). Additionally, insulin metabolic signaling, NADPH oxidase activity, reactive oxygen species (ROS), and ultrastructural changes as evaluated by transmission electron microscopy were examined ex vivo in skeletal muscle tissue.
Results
The Ren2 rat demonstrated systemic insulin resistance as examined by HOMA-IR, along with impaired insulin metabolic signaling in skeletal muscle. This was associated with increased oxidative stress and mitochondrial remodeling. Treatment with nebivolol was associated with improvement in insulin resistance and decreased NADPH oxidase activity/levels ROS in skeletal muscle tissue.
Conclusions
Nebivolol treatment for 3 weeks reduces NADPH oxidase activity and improves systemic insulin resistance, in concert with reduced oxidative stress in skeletal muscle in a young rodent model of hypertension, insulin resistance and enhanced tissue RAS expression.
doi:10.1016/j.metabol.2011.04.009
PMCID: PMC3170670  PMID: 21640361
Insulin resistance; oxidative stress; skeletal muscle
7.  RAS-Mediated Adaptive Mechanisms in Cardiovascular Tissues: Confounding Factors of RAS Blockade Therapy and Alternative Approaches 
Cardiorenal Medicine  2012;2(4):268-280.
Since the classic experiments by Tigerstedt and Bergman that established the role of renin in hypertension a century ago, aggressive efforts have been launched to effectively block the renin-angiotensin system (RAS). Blockade of RAS is advocated at multiple levels by direct renin inhibitor, angiotensin-converting enzyme inhibitor and/or angiotensin II type 1 receptor blocker, or aldosterone inhibitor (spironolactone), and has now become part of the standard of care to control hypertension and related metabolic diseases including diabetes. However, recent lessons learned from randomized clinical trials question the wisdom of blocking RAS at multiple levels. In this context, it is highly pertinent that components of RAS are evolutionarily conserved, and novel physiological/adaptive/protective roles for renin and angiotensin-converting enzyme are currently emerging. Angiotensin II, the classical RAS effector peptide responsible for hypertension, hypertrophy, fluid retention and fibrosis, manifests its cardiovascular protective effect when it activates the angiotensin II type 2 receptor. Additionally, angiotensin-converting enzyme 2 and the angiotensin II metabolite Ang-(1–7) that acts through the Mas proto-oncogene constitute the cardiovascular and renal protective branch of RAS. It is conceivable that modulating this vasodilative/anti-inflammatory branch of RAS by activation of the RAS components that constitute this branch may offer a safer long-term treatment strategy to balance RAS activity and achieve homeostasis compared to chronic multilevel RAS inhibition.
doi:10.1159/000343456
PMCID: PMC3551408  PMID: 23381810
Renin-angiotensin system; Angiotensin II type 1 receptor; Angiotensin II type 2 receptor; Angiotensin-converting enzyme 2; Chymase
8.  Angiotensin II Activation of mTOR Results in Tubulointerstitial Fibrosis through Loss of N-Cadherin 
American Journal of Nephrology  2011;34(2):115-125.
Background/Aims
Angiotensin (Ang) II contributes to tubulointerstitial fibrosis. Recent data highlight mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) signaling in tubulointerstitial fibrosis; however, the mechanisms remain unclear. Thereby, we investigated the role of Ang II on mTOR/S6K1-dependent proximal tubule (PT) injury, remodeling, and fibrosis.
Methods
We utilized young transgenic Ren2 rats (R2-T) and Sprague-Dawley rats (SD-T) treated with the Ang type 1 receptor (AT1R) blocker telmisartan (2 mg · kg−1 · day−1) or vehicle (R2-C; SD-C) for 3 weeks to examine PT structure and function.
Results
Ren2 rats displayed increased systolic blood pressure, proteinuria and increased PT oxidant stress and remodeling. There were parallel increases in kidney injury molecule-1 and reductions in neprilysin and megalin with associated ultrastructural findings of decreased clathrin-coated pits, endosomes, and vacuoles. Ren2 rats displayed increased Serine2448 phosphorylation of mTOR and downstream S6K1, in concert with ultrastructural basement membrane thickening, tubulointerstitial fibrosis and loss of the adhesion molecule N-cadherin. Telmisartan treatment attenuated proteinuria as well as the biochemical and tubulointerstitial structural abnormalities seen in the Ren2 rats.
Conclusions
Our observations suggest that Ang II activation of the AT1R contributes to PT brush border injury and remodeling, in part, due to enhanced mTOR/S6K1 signaling which promotes tubulointerstitial fibrosis through loss of N-cadherin.
doi:10.1159/000329327
PMCID: PMC3130895  PMID: 21720156
Angiotensin II; mTOR; N-Cadherin; Proximal tubule; Tubulointerstitial fibrosis
9.  Regulation of Overnutrition-Induced Cardiac Inflammatory Mechanisms 
Cardiorenal Medicine  2012;2(3):225-233.
Background
Unlike conventional β-blockers, nebivolol, a third-generation β-adrenergic receptor blocker with vasodilator properties, promotes insulin sensitivity. Objective: The objective of this study was to determine whether nebivolol regulates overnutrition-induced activation of cardiac nutrient sensor kinases and inflammatory signaling.
Methods
Young Zucker obese (ZO) rats, a rodent model for overnutrition, and age-matched Zucker lean rats were treated with nebivolol (10 mg/kg/day; 21 days) and cardiac function was monitored by echocardiography and pressure volume loop analysis. Activation status of nutrient sensor serine/threonine kinases mammalian target for rapamycin (mTOR), and p70 S6kinase (S6K1) and S6K1-substrate RPS6, inflammatory marker Janus kinase 2 (Jak2) and its substrate STAT1, and energy sensor AMP-dependent kinase (AMPK) were monitored by determining phosphorylation status of pSer2448 of mTOR, pThr389 of S6K1, pSer235/236 of RPS6, pTyr1007/1008 of Jak2, pTyr701 of STAT1, and pThr172 of AMPK, respectively.
Results
Nebivolol reduced weight and improved cardiac function of ZO rats as shown by improvements in the myocardial performance index and a decrease in the diastolic parameter tau (τ), the time constant of isovolumic relaxation. Nebivolol also attenuated excessive activation of the nutrient sensor kinases mTOR and S6K1 and their substrate RPS6 as well as the inflammatory marker Jak2 and substrate STAT1 in ZO myocardium (p < 0.05). Moreover, nebivolol reversed suppression of the energy sensor kinase AMPK in ZO hearts (p < 0.05).
Conclusion
We report for the first time that nebivolol regulates overnutrition-induced activation of cardiac mTOR and Jak/STAT signaling and reverses suppression of AMPK. Since it also suppresses weight gain, nebivolol appears effective in the treatment of overnutrition-related cardiac inflammation and diastolic dysfunction.
doi:10.1159/000339565
PMCID: PMC3433007  PMID: 22969779
Nebivolol; Zucker obese; AMP kinase; mTORC1; Jak/STAT
10.  Mitochondria and Oxidative Stress in the Cardiorenal Metabolic Syndrome 
Cardiorenal Medicine  2012;2(2):87-109.
Mitochondria play a fundamental role in the maintenance of normal structure, function, and survival of tissues. There is considerable evidence for mitochondrial dysfunction in association with metabolic diseases including insulin resistance, obesity, diabetes, and the cardiorenal metabolic syndrome. The phenomenon of reactive oxygen species (ROS)-induced ROS release through interactions between cytosolic and mitochondrial oxidative stress contributes to a vicious cycle of enhanced oxidative stress and mitochondrial dysfunction. Activation of the cytosolic and mitochondrial NADPH oxidase system, impairment of the mitochondrial electron transport, activation of p66shc pathway-targeting mitochondria, endoplasmic reticular stress, and activation of the mammalian target of the rapamycin-S6 kinase pathway underlie dysregulation of mitochondrial dynamics and promote mitochondrial oxidative stress. These processes are further modulated by acetyltransferases including sirtuin 1 and sirtuin 3, the former regulating nuclear acetylation and the latter regulating mitochondrial acetylation. The regulation of mitochondrial functions by microRNAs forms an additional layer of molecular control of mitochondrial oxidative stress. Alcohol further exacerbates mitochondrial oxidative stress induced by overnutrition and promotes the development of metabolic diseases.
doi:10.1159/000335675
PMCID: PMC3357146  PMID: 22619657
Cardiorenal syndrome; Overnutrition; Mitochondria; NADPH oxidase; Angiotensin II; MicroRNA; Alcoholic cardiomyopathy
11.  Cardiac Insulin Resistance and MicroRNA Modulators 
Experimental Diabetes Research  2011;2012:654904.
Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS), and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS) and angiotensin II (Ang II) activate mammalian target for rapamycin (mTOR)/p70 S6 kinase (S6K1) signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2), it also renders cardioprotection via increased Ang II receptor 2 (AT2R) upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO) rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.
doi:10.1155/2012/654904
PMCID: PMC3184440  PMID: 21977024
12.  Possible Mechanisms of Local Tissue Renin-Angiotensin System Activation in the Cardiorenal Metabolic Syndrome and Type 2 Diabetes Mellitus 
Cardiorenal Medicine  2011;1(3):193-210.
The role of local tissue renin-angiotensin system (tRAS) activation in the cardiorenal metabolic syndrome (CRS) and type 2 diabetes mellitus (T2DM) is not well understood. To this point, we posit that early redox stress-mediated injury to tissues and organs via accumulation of excessive reactive oxygen species (ROS) and associated wound healing responses might serve as a paradigm to better understand how tRAS is involved. There are at least five common categories responsible for generating ROS that may result in a positive feedback ROS-tRAS axis. These mechanisms include metabolic substrate excess, hormonal excess, hypoxia-ischemia/reperfusion, trauma, and inflammation. Because ROS are toxic to proteins, lipids, and nucleic acids they may be the primary instigator, serving as the injury nidus to initiate the wound healing process. Insulin resistance is central to the development of the CRS and T2DM, and there are now thought to be four major organ systems important in their development. In states of overnutrition and tRAS activation, adipose tissue, skeletal muscle (SkM), islet tissues, and liver (the quadrumvirate) are individually and synergistically related to the development of insulin resistance, CRS, and T2DM. The obesity epidemic is thought to be the driving force behind the CRS and T2DM, which results in the impairment of multiple end-organs, including the cardiovascular system, pancreas, kidney, retina, liver, adipose tissue, SkM, and nervous system. A better understanding of the complex mechanisms leading to local tRAS activation and increases in tissue ROS may lead to new therapies emphasizing global risk reduction of ROS resulting in decreased morbidity and mortality.
doi:10.1159/000329926
PMCID: PMC3169372  PMID: 22096455
Adipose tissue; Insulin resistance; Mast cells; Reactive oxygen species; Redox stress; Renin-angiotensin system; Type 2 diabetes mellitus
13.  The Impact of Overnutrition on Insulin Metabolic Signaling in the Heart and the Kidney 
Cardiorenal Medicine  2011;1(2):102-112.
Overnutrition characterized by overconsumption of food rich in fat and carbohydrates is a significant contributor to hypertension, type 2 diabetes, and the cardiorenal syndrome. Overnutrition activates the renin-angiotensin-aldosterone system (RAAS) and causes chronic exposure of cardiovascular and renal tissue to increased circulating nutrients, insulin (INS), and angiotensin II (ANG II). Emerging evidence suggests that overnutrition, aldosterone, and ANG II promote INS resistance, a chronic condition that underlies these co-morbidities, through activation of the mammalian target of the rapamycin (mTOR)/S6 kinase 1 (S6K1) signaling pathway in cardiovascular tissue and the kidney. However, a novel ANG II type 2 receptor (AT2R)-mediated cross talk between the RAAS and mTOR pathways ameliorates overnutrition-induced activation of mTOR/S6K1 signaling in cardiovascular tissue of rats, mice, and humans and confers cardioprotection.
doi:10.1159/000327140
PMCID: PMC3101510  PMID: 22258397
Overnutrition; Hypertension; Insulin metabolic signaling; Progressive kidney disease
14.  Overnutrition and the Cardiorenal Syndrome: Use of a Rodent Model to Examine Mechanisms 
Cardiorenal Medicine  2011;1(1):23-30.
Obesity has reached epidemic proportions with far-reaching health care and economic implications. Overnutrition, characterized by excess intake of carbohydrates and fats, has been associated with end-organ damage in several tissues, including the heart and the kidney. Furthermore, overnutrition is one of the most important modifiable and preventable causes of morbidity and mortality associated with cardiovascular and kidney diseases. Insulin resistance and compensatory hyperinsulinemia as well as associated mechanisms, including enhanced renin-angiotensin-aldosterone system activity, inflammation, and oxidative stress, have been implicated in obesity-related cardiorenal injury. In this review, the effect of overnutrition on heart and kidney disease is assessed in a rodent model of overnutrition and obesity, the Zucker obese rat.
doi:10.1159/000322827
PMCID: PMC3101518  PMID: 22258463
Cardiorenal syndrome; Heart/kidney disease; Obesity; Overnutrition; Zucker rat model
15.  Peptidyl-Prolyl cis/trans Isomerase-Independent Functional NifH Mutant of Azotobacter vinelandii† 
Journal of Bacteriology  2006;188(16):6020-6025.
Peptidyl-prolyl cis/trans isomerases (PPIases) play a pivotal role in catalyzing the correct folding of many prokaryotic and eukaryotic proteins that are implicated in a variety of biological functions, ranging from cell cycle regulation to bacterial infection. The nif accessory protein NifM, which is essential for the biogenesis of a functional NifH component of nitrogenase, is a PPIase. To understand the nature of the molecular signature that defines the NifM dependence of NifH, we screened a library of nifH mutants in the nitrogen-fixing bacterium Azotobacter vinelandii for mutants that acquired NifM independence. Here, we report that NifH can acquire NifM independence when the conserved Pro258 located in the C-terminal region of NifH, which wraps around the other subunit in the NifH dimer, is replaced by serine.
doi:10.1128/JB.00379-06
PMCID: PMC1540071  PMID: 16885471

Results 1-15 (15)