Search tips
Search criteria

Results 1-25 (51)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Association analysis of the reticulon 1 gene (RTN1) in end-stage kidney disease 
American journal of nephrology  2015;42(4):259-264.
The reticulon 1 gene (RTN1) encodes reticulons, endoplasmic reticulum stress proteins recently implicated in kidney disease progression.
RTN1 single nucleotide polymorphisms (SNPs) were tested for association with type 2 diabetes-associated (T2D) end-stage kidney disease (ESKD) in African Americans (AAs) and European Americans (EAs), and AAs with non-diabetic ESKD. RTN1 SNPs that were associated with T2D-ESKD in AA cases compared to non-nephropathy controls were identified from a discovery genome-wide association study (N=1,797), then tested for replication in 1,847 additional AA T2D-ESKD cases and controls.
Three intronic RTN1 variants were nominally associated with T2D-ESKD in both discovery and replication analyses: rs1952034, rs12431381, and rs12434215 (additive models); combined T2D-ESKD (discovery+replication) p-values were 0.015-3.0×10−4 (odds ratios [ORs] 0.67-0.77; minor alleles protective). In addition, rs12434215 was weakly associated with T2D-ESKD in 557 EA T2D-ESKD cases contrasted with 753 EA non-nephropathy controls (p=0.019; OR=0.69, dominant model). Nominal association extended to non-diabetic causes of ESKD in 1,459 additional AA cases (rs12431381 and rs12434215 p-values=0.014–0.015; OR=0.77). An all-cause ESKD association analysis contrasted the 3,594 AA ESKD cases with 1,489 AA non-nephropathy controls and detected association with rs12434215 (p=6.7×10−4, OR=0.73) and rs12431381 (p=7.5×10−4, OR=0.75) in dominant models. Of the three SNPs, only rs12434215 was weakly associated with T2D per se when contrasting T2D non-nephropathy cases with non-diabetic controls (additive model p=0.032 AAs; p=0.048 EAs).
These results suggest evidence of genetic association between common variants in RTN1 and ESKD in AAs and EAs.
PMCID: PMC4651726  PMID: 26496126
African Americans; chronic kidney disease; diabetes; diabetic kidney disease; genetics; reticulon 1
2.  Re-sequencing of the APOL1-APOL4 and MYH9 gene regions in African Americans does not identify additional risks for CKD progression 
American journal of nephrology  2015;42(2):99-106.
APOL1 G1 and G2 nephropathy risk variants are associated with non-diabetic end-stage kidney disease (ESKD) in African Americans (AAs) in an autosomal recessive pattern. Additional risk and protective genetic variants may be present near the APOL1 loci since earlier age ESKD is observed in some AAs with one APOL1 renal-risk variant and because the adjacent gene MYH9 is associated with nephropathy in populations lacking G1 and G2 variants.
Re-sequencing was performed across a ~275 kb region encompassing the APOL1-APOL4 and MYH9 genes in 154 AA cases with non-diabetic ESKD and 38 controls without nephropathy who were heterozygous for a single APOL1 G1 or G2 risk variant.
Sequencing identified 3246 non-coding single nucleotide polymorphisms (SNPs), 55 coding SNPs, and 246 insertion/deletions (InDels). No new coding variations were identified. Eleven variants, including a rare APOL3 Gln58Ter null variant (rs11089781), were genotyped in a replication panel of 1571 AA ESKD cases and 1334 controls. After adjusting for APOL1 G1 and G2 risk effects, these variations were not significantly associated with ESKD. In subjects with <2 APOL1 G1 and/or G2 alleles (849 cases; 1139 controls), the APOL3 null variant was nominally associated with ESKD (recessive model, OR 1.81; p=0.026); however, analysis in 807 AA cases and 634 controls from the Family Investigation of Nephropathy and Diabetes (FIND) did not replicate this association.
Additional common variants in the APOL1-APOL4-MYH9 region do not contribute significantly to ESKD risk beyond the APOL1 G1 and G2 alleles.
PMCID: PMC4589514  PMID: 26343748
African Americans; APOL1; kidney disease; FSGS; genetics; DNA sequencing
3.  Analysis of a Cardiovascular Disease Genetic Risk Score in the Diabetes Heart Study 
Acta diabetologica  2015;52(4):743-751.
It remains unclear whether the high cardiovascular disease (CVD) burden in people with type 2 diabetes (T2D) is associated with genetic variants that contribute to CVD in general populations. Recent studies have examined genetic risk scores of single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) for their cumulative contribution to CVD-related traits. Most analyses combined SNPs associated with a single phenotypic class, e.g. lipids. In the present analysis, we examined a more comprehensive risk score comprised of SNPs associated with a broad range of CVD risk phenotypes.
The composite risk score was analyzed for potential associations with subclinical CVD, self-reported CVD events, and mortality in 983 T2D-affected individuals of European descent from 466 Diabetes Heart Study (DHS) families. Genetic association was examined using marginal models with generalized estimating equations for subclinical CVD and prior CVD events and Cox proportional hazards models with sandwich-based variance estimation for mortality; analyses were adjusted for age and sex.
An increase in genetic risk score was significantly associated with higher levels of coronary artery calcified plaque (p=1.23 × 10−4); however, no significant associations with self-reported myocardial infarction and CVD events and all-cause and CVD mortality were observed.
These results suggest that a genetic risk score of SNPs associated with CVD events and risk factors does not significantly account for CVD risk in the DHS, highlighting the limitations of applying current genetic markers for CVD in individuals with diabetes.
PMCID: PMC4506855  PMID: 25700702
Type 2 diabetes; mortality; coronary artery calcification; genetic risk score
4.  Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure 
Apolipoprotein L1 gene (APOL1) nephropathy variants in African American deceased kidney donors were associated with shorter renal allograft survival in a prior single-center report. APOL1 G1 and G2 variants were genotyped in newly accrued DNA samples from African American deceased donors of kidneys recovered and/or transplanted in Alabama and North Carolina. APOL1 genotypes and allograft outcomes in subsequent transplants from 55 U.S. centers were linked, adjusting for age, sex and race/ethnicity of recipients, HLA match, cold ischemia time, panel reactive antibody levels, and donor type. For 221 transplantations from kidneys recovered in Alabama, there was a statistical trend toward shorter allograft survival in recipients of two-APOL1-nephropathy-variant kidneys (hazard ratio [HR] 2.71; p=0.06). For all 675 kidneys transplanted from donors at both centers, APOL1 genotype (HR 2.26; p=0.001) and African American recipient race/ethnicity (HR 1.60; p=0.03) were associated with allograft failure. Kidneys from African American deceased donors with two APOL1 nephropathy variants reproducibly associate with higher risk for allograft failure after transplantation. These findings warrant consideration of rapidly genotyping deceased African American kidney donors for APOL1 risk variants at organ recovery and incorporation of results into allocation and informed-consent processes.
PMCID: PMC4784684  PMID: 25809272
5.  Deceased donor multidrug resistance protein 1 and caveolin 1 gene variants may influence allograft survival in kidney transplantation 
Kidney international  2015;88(3):584-592.
Variants in donor multidrug resistance protein 1 (ABCB1) and caveolin 1 (CAV1) genes are associated with renal allograft failure after transplantation in Europeans. Here we assessed transplantation outcomes of kidneys from 368 African American (AA) and 314 European American (EA) deceased donors based on 38 single nucleotide polymorphisms (SNPs) spanning ABCB1 and 16 SNPs spanning CAV1, including previously associated index and haplotype-tagging SNPs. Tests for association with time to allograft failure were performed for the 1,233 resultant kidney transplantations, adjusting for recipient age, sex, ethnicity, cold ischemia time, PRA, HLA match, expanded-criteria donation, and APOL1- nephropathy variants in AA donors. Interaction analyses between APOL1 with ABCB1 and CAV1 were performed. In a meta-analysis of all transplantations, ABCB1 index SNP rs1045642 was associated with time to allograft failure and other ABCB1 SNPs were nominally associated, but not CAV1 SNPs. ABCB1 SNP rs1045642 showed consistent effects with the 558 transplantations from EA donors, but not with the 675 transplantations from AA donors. ABCB1 SNP rs956825 and CAV1 SNP rs6466583 interacted with APOL1 in transplants from AA donors. Thus, the T allele at ABCB1 rs1045642 is associated with shorter renal allograft survival for kidneys from American donors. Interactions between ABCB1 and CAV1 with APOL1 may influence allograft failure for transplanted kidneys from AA donors.
PMCID: PMC4556550  PMID: 25853335
African American; allograft failure; ABCB1; APOL1; CAV1; kidney transplantation
6.  The ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney disease 
Human Molecular Genetics  2014;23(24):6441-6447.
Familial clustering and presumed genetic risk for type 2 diabetic (T2D) and non-diabetic end-stage kidney disease (ESKD) appear strong in African Americans. Examination of exome sequencing data in African American T2D-ESKD cases and non-diabetic non-nephropathy controls identified two low-frequency variants in the RREB1 gene, a repressor of the angiotensinogen (AGT) gene previously associated with kidney function, as being associated with T2D-ESKD: rs9379084 (P = 0.00087, OR = 0.26; D1171N) and rs41302867 (P = 0.00078, OR = 0.21; splice site variant). Rs41302867 replicated association in an independent sample of African Americans with T2D-ESKD [rs41302867 P = 0.033 (OR = 0.50)], and a trend towards rs9379084 association was observed (P = 0.070). In European Americans with T2D-ESKD compared with European American population based controls, both RREB1 variants replicated association [rs9379084 P = 1.67 × 10−4 (OR = 0.54) and rs41302867 P = 0.013 (OR = 0.69)]. Rs9379084 was not associated with non-T2D-ESKD or T2D in African Americans (P = 0.55 and P = 0.37, respectively), but was associated with T2D in European Americans (P = 0.014, OR = 0.65). In African Americans, rs41302867 was associated with non-T2D-ESKD [P = 0.036 (OR = 0.54)] and hypertension attributed ESKD [H-ESKD, P = 0.029 (OR = 0.50)]. A meta-analysis combining African American and European American T2D-ESKD data revealed P = 3.52 × 10−7 and 3.70 × 10−5 for rs9379084 and rs41302867 association, respectfully. A locus-wide analysis evaluating putatively functional SNPs revealed several nominal associations with T2D-ESKD, non-T2D-ESKD and T2D in African and European Americans. RREB1 is a large, complex gene which codes a multidomain zinc finger binding protein and transcription factor. We posit that variants in RREB1 modulate seemingly disparate phenotypes (i.e. T2D, T2D-ESKD and non-T2D-ESKD) through altered activity resulting from splice site and missense variants.
PMCID: PMC4240197  PMID: 25027322
7.  Complement factor H gene associations with end-stage kidney disease in African Americans 
Nephrology Dialysis Transplantation  2014;29(7):1409-1414.
Mutations in the complement factor H gene (CFH) region associate with renal-limited mesangial proliferative forms of glomerulonephritis including IgA nephropathy (IgAN), dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). Lack of kidney biopsies could lead to under diagnosis of CFH-associated end-stage kidney disease (ESKD) in African Americans (AAs), with incorrect attribution to other causes. A prior genome-wide association study in AAs with non-diabetic ESKD implicated an intronic CFH single nucleotide polymorphism (SNP).
Thirteen CFH SNPs (8 exonic, 2 synonymous, 2 3′UTR, and the previously associated intronic variant rs379489) were tested for association with common forms of non-diabetic and type 2 diabetes-associated (T2D) ESKD in 3770 AAs (1705 with non-diabetic ESKD, 1305 with T2D-ESKD, 760 controls). Most cases lacked kidney biopsies; those with known IgAN, DDD or C3GN were excluded.
Adjusting for age, gender, ancestry and apolipoprotein L1 gene risk variants, single SNP analyses detected 6 CFH SNPs (5 exonic and the intronic variant) as significantly associated with non-diabetic ESKD (P = 0.002–0.01), three of these SNPs were also associated with T2D-ESKD. Weighted CFH locus-wide Sequence Kernel Association Testing (SKAT) in non-diabetic ESKD (P = 0.00053) and T2D-ESKD (P = 0.047) confirmed significant evidence of association.
CFH was associated with commonly reported etiologies of ESKD in the AA population. These results suggest that a subset of cases with ESKD clinically ascribed to the effects of hypertension or glomerulosclerosis actually have CFH-related forms of mesangial proliferative glomerulonephritis. Genetic testing may prove useful to identify the causes of renal-limited kidney disease in patients with ESKD who lack renal biopsies.
PMCID: PMC4081633  PMID: 24586071
African Americans; CFH; end-stage kidney disease; genetics; kidney disease
8.  APOL1 associations with nephropathy, atherosclerosis, and all-cause mortality in African Americans with type 2 diabetes 
Kidney international  2014;87(1):176-181.
Albuminuria and reduced eGFR associate with two apolipoprotein L1 gene (APOL1) variants in non-diabetic African Americans. Whether APOL1 associates with subclinical atherosclerosis and survival remains unclear. To determine this, 717 African American-Diabetes Heart Study participants underwent computed tomography to determine coronary artery, carotid artery, and aorta calcified atherosclerotic plaque mass scores in addition to the urine albumin:creatinine ratio (UACR), eGFR, and C-reactive protein. Associations between mass scores and APOL1 were assessed adjusting for age, gender, African ancestry, BMI, HbA1c, smoking, hypertension, use of statins and ACE inhibitors, albuminuria, and eGFR. Participants were 58.9% female with mean age 56.5 years, eGFR 89.5 ml/min/1.73m2, UACR 169.6 mg/g, coronary artery, carotid artery and aorta calcified plaque mass scores of 610, 171 and 5378, respectively. In fully adjusted models, APOL1 risk variants were significantly associated with lower levels of carotid artery calcified plaque (β −0.42, SE 0.18, dominant model), and marginally lower coronary artery plaque (β −0.36, SE 0.21; dominant model), but not with aorta calcified plaque, C-reactive protein, UACR, or eGFR. After a mean follow-up of 5.0 years, 89 participants died. APOL1 nephropathy risk variants were significantly associated with improved survival (hazard ratio 0.67 for 1 copy; 0.44 for 2 copies). Thus, APOL1 nephropathy variants associate with lower levels of subclinical atherosclerosis and reduced risk of death in African Americans with type 2 diabetes mellitus.
PMCID: PMC4281283  PMID: 25054777
African Americans; apolipoprotein L1 gene (APOL1); atherosclerosis; calcified atherosclerotic plaque; diabetes mellitus; kidney disease
9.  Analysis of Coding Variants Identified from Exome Sequencing Resources for Association with Diabetic and Non-diabetic Nephropathy in African Americans 
Human genetics  2014;133(6):769-779.
Prior studies have identified common genetic variants influencing diabetic and non-diabetic nephropathy, diseases which disproportionately affect African Americans. Recently, exome sequencing techniques have facilitated identification of coding variants on a genome-wide basis in large samples. Exonic variants in known or suspected end-stage kidney disease (ESKD) or nephropathy genes can be tested for their ability to identify association either singly or in combination with known associated common variants. Coding variants in genes with prior evidence for association with ESKD or nephropathy were identified in the NHLBI-ESP GO database and genotyped in 5045 African Americans (3324 cases with type 2 diabetes associated nephropathy [T2D-ESKD] or non-T2D ESKD, and 1721 controls) and 1465 European Americans (568 T2D-ESKD cases and 897 controls). Logistic regression analyses were performed to assess association, with admixture and APOL1 risk status incorporated as covariates. Ten of 31 SNPs were associated in African Americans; four replicated in European Americans. In African Americans, SNPs in OR2L8, OR2AK2, C6orf167 (MMS22L), LIMK2, APOL3, APOL2, and APOL1 were nominally associated (P=1.8×10−4-0.044). Haplotype analysis of common and coding variants increased evidence of association at the OR2L13 and APOL1 loci (P=6.2×10−5 and 4.6×10−5, respectively). SNPs replicating in European Americans were in OR2AK2, LIMK2, and APOL2 (P=0.0010-0.037). Meta-analyses highlighted four SNPs associated in T2DESKD and all-cause ESKD. Results from this study suggest a role for coding variants in the development of diabetic, non-diabetic, and/or all-cause ESKD in African Americans and/or European Americans.
PMCID: PMC4024071  PMID: 24385048
African Americans; Association; European Americans; Exonic Variants; Type 2 Diabetes; Nephropathy
10.  Gene–gene interactions in APOL1-associated nephropathy 
Two APOL1 nephropathy variants confer substantial risk for non-diabetic end-stage kidney disease (ESKD) in African Americans (AAs). Since not all genetically high-risk individuals develop ESKD, modifying factors likely contribute. Forty-two potentially interactive single nucleotide polymorphisms (SNPs) from a genome-wide association study in non-diabetic ESKD were tested for interaction with APOL1 to identify genes modifying risk for non-diabetic nephropathy.
SNPs were examined in an expanded sample of 1367 AA non-diabetic ESKD cases and 1504 AA non-nephropathy controls, with validation in an independent family-based cohort containing 608 first-degree relatives of index cases with non-diabetic ESKD. Logistic regression and mixed models were fitted to test for interaction effects with APOL1 on ESKD, estimated kidney function and albuminuria.
Among ESKD samples, 14 of 42 SNPs demonstrated suggestive APOL1 interaction with P-values <0.05. After Bonferroni correction, significant interactions with APOL1 were seen with SNPs in podocin (rs16854341; NPHS2, P = 8.0 × 10−4), in SDCCAG8 (rs2802723; P = 5.0 × 10−4) and near BMP4 (rs8014363; P = 1.0 × 10−3); with trends for ENOX1 (rs9533534; P = 2.2 × 10−3) and near TRIB1 (rs4457349; P = 5.7 × 10−3). The minor allele in NPHS2 markedly changed the APOL1-ESKD association odds ratio (OR) from 7.03 to 1.76 (∼50% reduction in effect per copy of the minor allele), rs2802723 changed the OR from 5.1 to 10.5, and rs8014363 increased the OR from 4.8 to 9.5. NPHS2 (P = 0.05) and SDCCAG8 (P = 0.03) SNPs demonstrated APOL1 interaction with albuminuria in independent family-based samples.
Variants in NPHS2, SDCCAG8 and near BMP4 appear to interact with APOL1 to modulate the risk for non-diabetic ESKD in AAs.
PMCID: PMC3938297  PMID: 24157943
African American; APOL1; bone morphogenetic protein 4 (BMP4); kidney disease; podocin (NPHS2); serologically defined colon cancer antigen 8 (SDCCAG8)
11.  JC polyoma virus interacts with APOL1 in African Americans with non-diabetic nephropathy 
Kidney international  2013;84(6):10.1038/ki.2013.173.
Individuals with HIV infection and two apolipoprotein L1 gene (APOL1) risk variants frequently develop nephropathy. Here we tested whether non-HIV viral infections influence nephropathy risk via interactions with APOL1 by assessing APOL1 genotypes and presence of urine JC and BK polyoma virus and plasma HHV6 and CMV by quantitative polymerase chain reaction. We analyzed 300 samples from unrelated and related first-degree relatives of African Americans with non-diabetic nephropathy using linear and non-linear mixed models to account for familial relationships. The four groups evaluated were APOL1 0/1 versus 2 risk alleles, with or without nephropathy. Urine JCV and BKV were detected in 90 and 29 patients while HHV6 and CMV were rare. Adjusting for family age at nephropathy, gender and ancestry, presence of JCV genomic DNA in urine and APOL1 risk alleles were significantly negatively associated with elevated serum cystatin C, albuminuria (albumin to creatinine ratio over 30 mg/g), and kidney disease defined as an eGFR under 60 ml/min per 1.73 m2 and/or albuminuria in an additive (APOL1 plus JCV) model. BK viruria was not associated with kidney disease. Thus, African Americans at increased risk for APOL1-associated nephropathy (two APOL1 risk variants) with JC viruria had a lower prevalence of kidney disease, suggesting that JCV interaction with APOL1 genotype may influence kidney disease risk.
PMCID: PMC3844025  PMID: 23677244
APOL1; BK polyomavirus; HIV; JC polyomavirus; kidney disease; proteinuria
12.  End-Stage Renal Disease in African Americans With Lupus Nephritis Is Associated With APOL1 
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE) that exhibits familial aggregation and may progress to end-stage renal disease (ESRD). LN is more prevalent among African Americans than among European Americans. This study was undertaken to investigate the hypothesis that the apolipoprotein L1 gene (APOL1) nephropathy risk alleles G1/G2, common in African Americans and rare in European Americans, contribute to the ethnic disparity in risk.
APOL1 G1 and G2 nephropathy alleles were genotyped in 855 African American SLE patients with LN-ESRD (cases) and 534 African American SLE patients without nephropathy (controls) and tested for association under a recessive genetic model, by logistic regression.
Ninety percent of the SLE patients were female. The mean ± SD age at SLE diagnosis was significantly lower in LN-ESRD cases than in SLE non-nephropathy controls (27.3 ± 10.9 years versus 39.5 ± 12.2 years). The mean ± SD time from SLE diagnosis to development of LN-ESRD in cases was 7.3 ± 7.2 years. The G1/G2 risk alleles were strongly associated with SLE-ESRD, with 25% of cases and 12% of controls having 2 nephropathy alleles (odds ratio [OR] 2.57, recessive model P = 1.49 × 10−9), and after adjustment for age, sex, and ancestry admixture (OR 2.72, P = 6.23 × 10−6). The age-, sex-, and admixture-adjusted population attributable risk for ESRD among patients with G1/G2 polymorphisms was 0.26, compared to 0.003 among European American patients. The mean time from SLE diagnosis to ESRD development was ~2 years earlier among individuals with APOL1 risk genotypes (P = 0.01).
APOL1 G1/G2 alleles strongly impact the risk of LN-ESRD in African Americans, as well as the time to progression to ESRD. The high frequency of these alleles in African Americans with near absence in European Americans explains an important proportion of the increased risk of LN-ESRD in African Americans.
PMCID: PMC4002759  PMID: 24504811
13.  Evaluation of Candidate Nephropathy Susceptibility Genes in a Genome-Wide Association Study of African American Diabetic Kidney Disease 
PLoS ONE  2014;9(2):e88273.
Type 2 diabetes (T2D)-associated end-stage kidney disease (ESKD) is a complex disorder resulting from the combined influence of genetic and environmental factors. This study contains a comprehensive genetic analysis of putative nephropathy loci in 965 African American (AA) cases with T2D-ESKD and 1029 AA population-based controls extending prior findings. Analysis was based on 4,341 directly genotyped and imputed single nucleotide polymorphisms (SNPs) in 22 nephropathy candidate genes. After admixture adjustment and correction for multiple comparisons, 37 SNPs across eight loci were significantly associated (1.6E-05
PMCID: PMC3923777  PMID: 24551085
The presence and severity of coronary artery calcified plaque (CAC) differs markedly between individuals of African and European descent, suggesting that admixture mapping (AM) may be informative for identifying genetic variants associated with subclinical cardiovascular disease (CVD).
Methods and Results
AM of CAC was performed in 1,040 unrelated African Americans with type 2 diabetes mellitus from the African American-Diabetes Heart Study (AA-DHS), Multi-Ethnic Study of Atherosclerosis (MESA), and Family Heart Study (FamHS) using the Illumina custom ancestry informative marker (AIM) panel. All cohorts obtained computed tomography scanning of the coronary arteries using identical protocols. For each AIM, the probability of inheriting 0, 1, and 2 copies of a European-derived allele was determined. Linkage analysis was performed by testing for association between each AIM using these probabilities and CAC, accounting for global ancestry, age, gender and study. Markers on 1p32.3 in the GLIS1 gene (rs6663966, LOD=3.7), 1q32.1 near CHIT1 (rs7530895, LOD=3.1), 4q21.2 near PRKG2 (rs1212373, LOD=3.0) and 11q25 in the OPCML gene (rs6590705, LOD=3.4) had statistically significant LOD scores, while markers on 8q22.2 (rs6994682, LOD=2.7), 9p21.2 (rs439314, LOD=2.7), and 13p32.1 (rs7492028, LOD=2.8) manifested suggestive evidence of linkage. These regions were uniformly characterized by higher levels of European ancestry associating with higher levels or odds of CAC. Findings were replicated in 1,350 AAs without diabetes and 2,497 diabetic European Americans from MESA and the Diabetes Heart Study.
Fine mapping these regions will likely identify novel genetic variants that contribute to CAC and clarify racial differences in susceptibility to subclinical CVD.
PMCID: PMC3578054  PMID: 23233742
ancestry; cardiovascular disease risk factors; type 2 diabetes; admixture mapping
American journal of nephrology  2012;36(3):252-260.
African Americans (AAs) are predisposed to non-diabetic (non-DM) end-stage renal disease (ESRD) and studies have shown a genetic component to this risk. Rare mutations in ACTN4 (α-actinin-4) an actin binding protein expressed in podocytes cause familial focal segmental glomerulosclerosis.
We assessed the contribution of coding variants in ACTN4 to non-DM ESRD risk in AAs. Nineteen exons, 2800 bases of the promoter and 392 bases of the 3’ untranslated region of ACTN4 were sequenced in 96 AA non-DM ESRD cases and 96 non-nephropathy controls (384 chromosomes). Sixty-seven single nucleotide polymorphisms (SNPs) including 51 novel SNPs were identified. The SNPs comprised 33 intronic, 21 promoter, 12 exonic, and 1 3’ variant. Sixty-two of the SNPs were genotyped in 296 AA non-DM ESRD cases and 358 non-nephropathy controls.
One SNP, rs10404257, was associated with non-DM ESRD (p<1.0E-4, odds ratio (OR)=0.76, confidence interval (CI)=0.59–0.98; additive model). Forty-seven SNPs had minor allele frequencies less than 5%. These SNPs were segregated into risk and protective SNPs and each category was collapsed into a single marker, designated by the presence or absence of any rare allele. The presence of any rare allele at a risk SNP was significantly associated with non-DM ESRD (p = 0.001, dominant model). The SNPs with the strongest evidence for association (n = 20) were genotyped in an independent set of 467 non-DM ESRD cases and 279 controls. Although, rs10404257 was not associated in this replication sample, when the samples were combined rs10404257 was modestly associated (p=0.032, OR=0.78, CI=0.63–0.98; dominant model). SNPs were tested for interaction with markers in the APOL1 gene, previously associated with non-DM ESRD in AAs and rs10404257 was modestly associated (p = 0.0261, additive model).
This detailed evaluation of ACTN4 variation revealed limited evidence of association with non-DM ESRD in AAs.
PMCID: PMC3510331  PMID: 22965004
ACTN4; non-diabetic ESRD; FSGS; kidney; hypertensive nephrosclerosis; African Americans
Nephrology Dialysis Transplantation  2011;27(4):1505-1511.
Polymorphisms in the non-muscle myosin IIA gene (MYH9) are associated with focal segmental glomerulosclerosis (FSGS) and non-diabetic end-stage renal disease (ESRD) in African Americans and FSGS in European Americans. We tested for association of single nucleotide polymorphisms (SNPs) in MYH9 with T2DM–ESRD in European Americans; additionally, three APOL1 gene variants were evaluated.
Fifteen MYH9 SNPs and two APOL1 SNPs plus a 6-bp deletion were genotyped in 1963 European Americans, 536 cases with T2DM–ESRD and 1427 non-nephropathy controls (467 with T2DM and 960 without diabetes).
Comparing T2DM–ESRD cases with the 467 T2DM non-nephropathy controls, single variant associations trending toward significance were detected with SNPs rs4821480, rs2032487 and rs4281481 comprising part of the major MYH9 E1 risk haplotype [P-values 0.053–0.055 recessive, odds ratio (OR) 6.08–6.14]. Comparing T2DM–ESRD cases to all 1427 non-nephropathy controls, we confirmed evidence of association in these three SNPs as well as in the fourth E1 SNP (rs3752462) (P-values 0.017–0.035, OR 1.41–3.72). APOL1 G1/G2 nephropathy risk variants were rare in individuals of European American heritage, present in 0.28% of chromosomes in T2DM–ESRD cases and 0.32% of controls.
MYH9 SNPs rs4821480, rs2032487, rs4281481 and rs3752462 are associated with T2DM–ESRD susceptibility in European Americans. The APOL1 risk variants are not present at appreciable frequency in this cohort with T2DM–ESRD. Therefore, polymorphisms in MYH9 appear to influence nephropathy risk in this sample.
PMCID: PMC3315672  PMID: 21968013
APOL1; diabetic nephropathy; end-stage renal disease; MYH9; type 2 diabetes mellitus
Kidney international  2012;82(7):805-811.
Familial aggregation of non-diabetic end stage renal disease (ESRD) is found in African Americans and variants in the apolipoprotein L1 gene (APOL1) contribute to this risk. To detect genetic associations with milder forms of nephropathy in high-risk families, analyses were performed using generalized estimating equations to assess relationships between kidney disease phenotypes and APOL1 variants in 786 relatives of 470 families. Adjusting for familial correlations, 23.1, 46.7, and 30.2 percent of genotyped relatives possessed two, one, or no APOL1 risk variants, respectively. Relatives with two compared to one or no risk variants had statistically indistinguishable median systolic blood pressure, urine albumin to creatinine ratio, estimated GFR (MDRD equation) and serum cystatin C levels. After adjusting for age, gender, age at ESRD in families, and African ancestry, significant associations were detected between APOL1 with overt proteinuria and estimated GFR (CKD-EPI equation), with a trend toward significance for quantitative albuminuria. Thus, relatives of African Americans with non-diabetic ESRD are enriched for APOL1 risk variants. After adjustment, two APOL1 risk variants weakly predict mild forms of kidney disease. Second hits appear necessary for the initiation of APOL1-associated nephropathy.
PMCID: PMC3443536  PMID: 22695330
African American; APOL1; end-stage renal disease; FSGS; kidney; screening
PLoS ONE  2013;8(2):e56193.
Acetyl coenzyme A carboxylase B gene (ACACB) single nucleotide polymorphism (SNP) rs2268388 is reproducibly associated with type 2 diabetes (T2DM)-associated nephropathy (DN). ACACB knock-out mice are also protected from obesity. This study assessed relationships between rs2268388, body mass index (BMI) and gene expression in multiple populations, with and without T2DM. Among subjects without T2DM, rs2268388 DN risk allele (T) associated with higher BMI in Pima Indian children (n = 2021; p-additive = 0.029) and African Americans (AAs) (n = 177; p-additive = 0.05), with a trend in European Americans (EAs) (n = 512; p-additive = 0.09), but not Germans (n = 858; p-additive = 0.765). Association with BMI was seen in a meta-analysis including all non-T2DM subjects (n = 3568; p-additive = 0.02). Among subjects with T2DM, rs2268388 was not associated with BMI in Japanese (n = 2912) or EAs (n = 1149); however, the T allele associated with higher BMI in the subset with BMI≥30 kg/m2 (n = 568 EAs; p-additive = 0.049, n = 196 Japanese; p-additive = 0.049). Association with BMI was strengthened in a T2DM meta-analysis that included an additional 756 AAs (p-additive = 0.080) and 48 Hong Kong Chinese (p-additive = 0.81) with BMI≥30 kg/m2 (n = 1575; p-additive = 0.0033). The effect of rs2268388 on gene expression revealed that the T risk allele associated with higher ACACB messenger levels in adipose tissue (41 EAs and 20 AAs with BMI>30 kg/m2; p-additive = 0.018) and ACACB protein levels in the liver tissue (mixed model p-additive = 0.03, in 25 EA bariatric surgery patients with BMI>30 kg/m2 for 75 exams). The T allele also associated with higher hepatic triglyceride levels. These data support a role for ACACB in obesity and potential roles for altered lipid metabolism in susceptibility to DN.
PMCID: PMC3584087  PMID: 23460794
African Americans (AAs) have increased susceptibility to non-diabetic nephropathy relative to European Americans.
Study Design
Follow-up of a pooled genome-wide association study (GWAS) in AA dialysis patients with nondiabetic nephropathy; novel gene-gene interaction analyses.
Setting & Participants
Wake Forest sample: 962 AA nondiabetic nephropathy cases; 931 non-nephropathy controls. Replication sample: 668 Family Investigation of Nephropathy and Diabetes (FIND) AA nondiabetic nephropathy cases; 804 non-nephropathy controls.
Individual genotyping of top 1420 pooled GWAS-associated single nucleotide polymorphisms (SNPs) and 54 SNPs in six nephropathy susceptibility genes.
APOL1 genetic association and additional candidate susceptibility loci interacting with, or independently from, APOL1.
The strongest GWAS associations included two non-coding APOL1 SNPs, rs2239785 (odds ratio [OR], 0.33; dominant; p = 5.9 × 10−24) and rs136148 (OR, 0.54; additive; p = 1.1 × 10−7) with replication in FIND (p = 5.0 × 10−21 and 1.9 × 10−05, respectively). Rs2239785 remained significantly associated after controlling for the APOL1 G1 and G2 coding variants. Additional top hits included a CFH SNP(OR from meta-analysis in above 3367 AA cases and controls, 0.81; additive; p = 6.8 × 10−4). The 1420 SNPs were tested for interaction with APOL1 G1 and G2 variants. Several interactive SNPs were detected, the most significant was rs16854341 in the podocin gene (NPHS2) (p = 0.0001).
Non-pooled GWAS have not been performed in AA nondiabetic nephropathy.
This follow-up of a pooled GWAS provides additional and independent evidence that APOL1 variants contribute to nondiabetic nephropathy in AAs and identified additional associated and interactive non-diabetic nephropathy susceptibility genes.
PMCID: PMC3259209  PMID: 22119407
African American; APOL1; CFH; end-stage renal disease; FIND; FSGS; hypertension
Journal of diabetes & metabolism  2011;2(145):1000145.
The hepatocyte nuclear factor 4-α (HNF4α) gene codes for a transcription factor which is responsible for regulating gene transcription in pancreatic beta cells, in addition to its primary role in hepatic gene regulation. Mutations in this gene can lead to maturity-onset diabetes of the young (MODY), an uncommon, autosomal dominant, non-insulin dependent form of diabetes. Mutations in HNF4α have been found in few individuals, and infrequently have they segregated completely with MODY in families. In addition, due to similarity of phenotypes, it is unclear what proportion of type 2 diabetes (T2DM) in the general population is due to MODY or HNF4α mutations specifically. In this study, 27 documented rare and common variants were genotyped in a European American population of 1270 T2DM cases and 1017 controls from review of databases and literature implicating HNF4α variants in MODY and T2DM. Seventeen variants were found to be monomorphic. Two cases and one control subject had one copy of a 6-bp P2 promoter deletion. The intron 1 variant (rs6103716; MAF = 0.31) was not significantly associated with disease status (p>0.8) and the missense variant Thr130Ile (rs1800961; MAF = 0.027) was also not significantly different between cases and controls (p>0.2), but showed a trend consistent with association with T2DM. Four variants were found to be rare as heterozygotes in small numbers of subjects. Since many variants were infrequent, a pooled chi-squared analysis of rare variants was used to assess the overall burden of variants between cases and controls. This analysis revealed no significant difference (P=0.22). We conclude there is little evidence to suggest that HNF4α variants contribute significantly to risk of T2DM in the general population, but a modest contribution cannot be excluded. In addition, the observation of some mutations in controls suggests they are not highly penetrant MODY-causing variants.
PMCID: PMC3515062  PMID: 23227446
Type 2 Diabetes; HNF4A; Rare variants
PLoS Genetics  2012;8(11):e1003032.
Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1×10−9). The improvement varied across diseases with a 16% median increase in χ2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci.
Author Summary
This work describes a new methodology for analyzing genome-wide case-control association studies of diseases with strong correlations to clinical covariates, such as age in prostate cancer and body mass index in type 2 diabetes. Currently, researchers either ignore these clinical covariates or apply approaches that ignore the disease's prevalence and the study's ascertainment strategy. We take an alternative approach, leveraging external prevalence information from the epidemiological literature and constructing a statistic based on the classic liability threshold model of disease. Our approach not only improves the power of studies that ascertain individuals randomly or based on the disease phenotype, but also improves the power of studies that ascertain individuals based on both the disease phenotype and clinical covariates. We apply our statistic to seven datasets over six different diseases and a variety of clinical covariates. We found that there was a substantial improvement in test statistics relative to current approaches at known associated variants. This suggests that novel loci may be identified by applying our method to existing and future association studies of these diseases.
PMCID: PMC3493452  PMID: 23144628
Nephrology Dialysis Transplantation  2011;26(11):3805-3810.
Background. Coding variants in the apolipoprotein L1 gene (APOL1) are strongly associated with non-diabetic nephropathy in African Americans. ApoL1 proteins associate with high-density lipoprotein (HDL) particles in the circulation. Plasma HDL particle subclass concentrations were compared in 73 African Americans based on APOL1 genotypes to detect differences potentially contributing to renal disease.
Methods. HDL subclass concentrations were measured using nuclear magnetic resonance spectroscopy in African American first-degree relatives of patients with non-diabetic end-stage renal disease. Participants had estimated glomerular filtration rates (GFRs) > 80 mL/min and lacked albuminuria. Additive effects of the number of APOL1 risk variants on natural logarithm-transformed HDL subclass concentrations were computed.
Results. Participants were 58.9% female with mean ± SD age 47.2 ± 13.3 years and GFR 92.4 ± 18.8 mL/min. The numbers with 2, 1 and 0 APOL1 nephropathy risk variants, respectively, were 36, 17 and 20. Mean ± SD medium-sized HDL concentrations were significantly lower for each additional APOL1 risk variant (2 versus 1 versus 0 risk variants: 9.0 ± 5.6 versus 10.1 ± 5.5 versus 13.1 ± 8.2 μmol/L, respectively; P = 0.0222 unadjusted; P = 0.0162 triglyceride- and ancestry adjusted).
Conclusions. Lower medium-sized HDL subclass concentrations are present in African Americans based on increasing numbers of APOL1 nephropathy risk variants. Potential mechanistic roles of altered medium HDL concentrations on APOL1-associated renal microvascular diseases should be evaluated.
PMCID: PMC3203631  PMID: 21931123
APOL1; arteriolar nephrosclerosis; FSGS; HDL cholesterol; kidney
American Journal of Nephrology  2011;33(6):502-509.
African-Americans (AAs) with diabetes have high incidence rates of end-stage renal disease (ESRD) with associated high mortality. Genetic factors modulating the risk of mortality on dialysis are poorly understood. Meth ods: A genome-wide association study was performed in 610 AAs with type 2 diabetes (T2D) and ESRD on dialysis, using the Affymetrix 6.0 platform (868,155 SNPs). Time to death was assessed using Cox proportional hazards model adjusting for ancestry and other confounding variables. Cases were censored at kidney transplant or (if living) at study conclusion.
Mean follow-up was 5.4 ± 3.5 years; 434 deaths were recorded. Five SNPs were associated with time to death at p < 1.00 × 10−6: rs2681019 (HR = 2.58, PREC = 8.00 × 10−8), rs815815 in CALM2 (HR = 1.51, PADD = 6.50 × 10−7), rs926392 (HR = 2.37, PREC = 4.80 × 10−7), and rs926391 (HR = 2.30, PREC = 7.30 × 10−7) near DHX35, and rs11128347 in PDZRN3 (HR = 0.57, PADD = 6.00 × 10−7). Other SNPs had nominal associations with time to death (p < 1.00 × 10−5).
Genetic variation may modify the risk of death on dialysis. SNPs in proximity to genes regulating vascular extracellular matrix, cardiac ventricular repolarization, and smoking cessation are associated with dialysis survival in AAs with T2D. These results warrant replication in other cohorts and races.
PMCID: PMC3202959  PMID: 21546767
African-Americans; Diabetes mellitus; Dialysis; Genome-wide association study; Survival
Coding variants in the apolipoprotein L1 gene (APOL1) are strongly associated with nephropathy in African Americans (AAs). The effect of transplanting kidneys from AA donors with two APOL1 nephropathy risk variants is unknown. APOL1 risk variants were genotyped in 106 AA deceased organ donors and graft survival assessed in 136 resultant kidney transplants. Cox proportional-hazard models tested for association between time to graft failure and donor APOL1 genotypes. Mean follow-up was 26.4 ± 21.8 months. Twenty-two of 136 transplanted kidneys (16%) were from donors with two APOL1 nephropathy risk variants. Twenty five grafts failed; eight (32%) had two APOL1 risk variants. A multivariate model accounting for donor APOL1 genotype, overall African ancestry, expanded criteria donation, recipient age and gender, HLA mismatch, CIT, and PRA revealed that graft survival was significantly shorter in donor kidneys with two APOL1 risk variants (hazard ratio [HR] 3.84; p=0.008) and higher HLA mismatch (HR 1.52; p=0.03), but not for overall African ancestry excluding APOL1. Kidneys from AA deceased donors harboring two APOL1 risk variants failed more rapidly after renal transplantation than those with zero or one risk variants. If replicated, APOL1 genotyping could improve the donor selection process and maximize long term renal allograft survival.
PMCID: PMC3083491  PMID: 21486385
African Americans; APOL1; focal segmental glomerulosclerosis; graft survival; kidney donor; kidney transplantation
Kidney international  2010;79(5):563-572.
A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD.
PMCID: PMC3056271  PMID: 21150874

Results 1-25 (51)