PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (33)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus 
Mahajan, Anubha | Sim, Xueling | Ng, Hui Jin | Manning, Alisa | Rivas, Manuel A. | Highland, Heather M. | Locke, Adam E. | Grarup, Niels | Im, Hae Kyung | Cingolani, Pablo | Flannick, Jason | Fontanillas, Pierre | Fuchsberger, Christian | Gaulton, Kyle J. | Teslovich, Tanya M. | Rayner, N. William | Robertson, Neil R. | Beer, Nicola L. | Rundle, Jana K. | Bork-Jensen, Jette | Ladenvall, Claes | Blancher, Christine | Buck, David | Buck, Gemma | Burtt, Noël P. | Gabriel, Stacey | Gjesing, Anette P. | Groves, Christopher J. | Hollensted, Mette | Huyghe, Jeroen R. | Jackson, Anne U. | Jun, Goo | Justesen, Johanne Marie | Mangino, Massimo | Murphy, Jacquelyn | Neville, Matt | Onofrio, Robert | Small, Kerrin S. | Stringham, Heather M. | Syvänen, Ann-Christine | Trakalo, Joseph | Abecasis, Goncalo | Bell, Graeme I. | Blangero, John | Cox, Nancy J. | Duggirala, Ravindranath | Hanis, Craig L. | Seielstad, Mark | Wilson, James G. | Christensen, Cramer | Brandslund, Ivan | Rauramaa, Rainer | Surdulescu, Gabriela L. | Doney, Alex S. F. | Lannfelt, Lars | Linneberg, Allan | Isomaa, Bo | Tuomi, Tiinamaija | Jørgensen, Marit E. | Jørgensen, Torben | Kuusisto, Johanna | Uusitupa, Matti | Salomaa, Veikko | Spector, Timothy D. | Morris, Andrew D. | Palmer, Colin N. A. | Collins, Francis S. | Mohlke, Karen L. | Bergman, Richard N. | Ingelsson, Erik | Lind, Lars | Tuomilehto, Jaakko | Hansen, Torben | Watanabe, Richard M. | Prokopenko, Inga | Dupuis, Josee | Karpe, Fredrik | Groop, Leif | Laakso, Markku | Pedersen, Oluf | Florez, Jose C. | Morris, Andrew P. | Altshuler, David | Meigs, James B. | Boehnke, Michael | McCarthy, Mark I. | Lindgren, Cecilia M. | Gloyn, Anna L.
PLoS Genetics  2015;11(1):e1004876.
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
Author Summary
Understanding how FI and FG levels are regulated is important because their derangement is a feature of T2D. Despite recent success from GWAS in identifying regions of the genome influencing glycemic traits, collectively these loci explain only a small proportion of trait variance. Unlocking the biological mechanisms driving these associations has been challenging because the vast majority of variants map to non-coding sequence, and the genes through which they exert their impact are largely unknown. In the current study, we sought to increase our understanding of the physiological pathways influencing both traits using exome-array genotyping in up to 33,231 non-diabetic individuals to identify coding variants and consequently genes associated with either FG or FI levels. We identified novel association signals for both traits including the receptor for GLP-1 agonists which are a widely used therapy for T2D. Furthermore, we identified coding variants at several GWAS loci which point to the genes underlying these association signals. Importantly, we found that multiple coding variants in G6PC2 result in a loss of protein function and lower fasting glucose levels.
doi:10.1371/journal.pgen.1004876
PMCID: PMC4307976  PMID: 25625282
2.  Identification of Pleiotropic Genetic Effects on Obesity and Brain Anatomy 
Human heredity  2013;75(0):136-143.
Background/Aims
Obesity is a major contributor to the global burden of chronic disease and disability, though current knowledge of causal biologic underpinnings is lacking. Through the regulation of energy homeostasis and interactions with adiposity and gut signals, the brain is thought to play a significant role in the development of this disorder. While neuroanatomic variation has been associated with obesity, it is unclear if this relationship is influenced by common genetic mechanisms. In this study, we sought genetic components that influence both brain anatomy and body mass index (BMI) to provide further insight into the role of the brain in energy homeostasis and obesity.
Methods
MRI images of brain anatomy were acquired in 839 Mexican American individuals from large extended pedigrees. Bivariate linkage and quantitative analyses were performed in SOLAR.
Results
Genetic factors associated with increased BMI were also associated with reduced cortical surface area and subcortical volume. We identified two genome-wide quantitative trait loci that influenced BMI and ventral diencephalon volume, and BMI and supramarginal gyrus surface area, respectively.
Conclusions
This study represents the first genetic analyses seeking evidence of pleiotropic effects acting on both brain anatomy and BMI. Results suggest that a region on chromosome 17 contributes to the development of obesity, potentially through leptin-induced signaling in the hypothalamus, and that a region on chromosome 3 appears to jointly influences food-related reward circuitry and the supramarginal gyrus.
doi:10.1159/000353953
PMCID: PMC3889074  PMID: 24081229
BMI; obesity; imaging; brain; pleiotropy
3.  Linkage of Type 2 Diabetes on Chromosome 9p24 in Mexican Americans: Additional Evidence from the Veterans Administration Genetic Epidemiology Study (VAGES) 
Human heredity  2013;76(1):36-46.
Objective
Type 2 diabetes (T2DM) is a complex metabolic disease and is more prevalent in certain ethnic groups such as the Mexican Americans. The goal of our study was to perform a genome-wide linkage analysis to localize T2DM susceptibility loci in Mexican Americans.
Methods
We used the phenotypic and genotypic data from 1,122 Mexican American individuals (307 families) who participated in the Veterans Administration Genetic Epidemiology Study (VAGES). Genome-wide linkage analysis was performed, using the variance components approach. Data from two additional Mexican American family studies, the San Antonio Family Heart Study (SAFHS) and the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), were combined with the VAGES data to test for improved linkage evidence.
Results
After adjusting for covariate effects, T2DM was found to be under significant genetic influences (h2 = 0.62, P = 2.7 × 10−6). The strongest evidence for linkage of T2DM occurred between markers D9S1871 and D9S2169 on chromosome 9p24.2-p24.1 (LOD = 1.8). Given that we previously reported suggestive evidence for linkage of T2DM at this region in SAFDGS also, we found the significant and increased linkage evidence (LOD = 4.3, empirical P = 1.0 × 10−5, genome-wide P = 1.6 × 10−3) for T2DM at the same chromosomal region when we performed genome-wide linkage analysis of the VAGES data combined with SAFHS and SAFDGS data.
Conclusion
Significant T2DM linkage evidence was found on chromosome 9p24 in Mexican Americans. Importantly, the chromosomal region of interest in this study overlaps with several recent genome-wide association studies (GWASs) involving T2DM related traits. Given its overlap with such findings and our own initial T2DM association findings in the 9p24 chromosomal region, high throughput sequencing of the linked chromosomal region could identify the potential causal T2DM genes.
doi:10.1159/000354849
PMCID: PMC3919448  PMID: 24060607
Type 2 diabetes; Linkage; Chromosome 9p24; Mexican Americans; VAGES
4.  Genetic epidemiology of cardiometabolic risk ractors and their clustering patterns in Mexican American children and adolescents: The SAFARI Study 
Human genetics  2013;132(9):10.1007/s00439-013-1315-2.
Pediatric metabolic syndrome (MS) and its cardiometabolic components (MSCs) have become increasingly prevalent, yet little is known about the genetics underlying MS risk in children. We examined the prevalence and genetics of MS-related traits among 670 non-diabetic Mexican American (MA) children and adolescents, aged 6–17 years (49 % female), who were participants in the San Antonio Family Assessment of Metabolic Risk Indicators in Youth (SAFARI) study. These children are offspring or biological relatives of adult participants from three well-established Mexican American family studies in San Antonio, Texas, at increased risk of type 2 diabetes. MS was defined as ≥ 3 abnormalities among 6 MSC measures: waist circumference, systolic and/or diastolic blood pressure, fasting insulin, triglycerides, HDL-cholesterol, and fasting and/or 2-h OGTT glucose. Genetic analyses of MS, number of MSCs (MSC-N), MS factors, and bivariate MS traits were performed. Overweight/obesity (53 %), pre-diabetes (13 %), acanthosis nigricans (33 %), and MS (19 %) were strikingly prevalent, as were MS components, including abdominal adiposity (32 %) and low HDL-cholesterol (32 %). Factor analysis of MS traits yielded three constructs: adipo-insulin-lipid, blood pressure, and glucose factors, and their factor scores were highly heritable. MS itself exhibited 68 % heritability. MSC-N showed strong positive genetic correlations with obesity, insulin resistance, inflammation, and acanthosis nigricans, and negative genetic correlation with physical fitness. MS trait pairs exhibited strong genetic and/or environmental correlations. These findings highlight the complex genetic architecture of MS/MSCs in MA children, and underscore the need for early screening and intervention to prevent chronic sequelae in this vulnerable pediatric population.
doi:10.1007/s00439-013-1315-2
PMCID: PMC3845827  PMID: 23736306
5.  PLASMA DIHYDROCERAMIDE SPECIES ASSOCIATE WITH WAIST CIRCUMFERENCE IN MEXICAN AMERICAN FAMILIES 
Obesity (Silver Spring, Md.)  2013;22(3):950-956.
Objective
Waist circumference (WC), the clinical marker of central obesity, is gaining popularity as a screening tool for type 2 diabetes (T2D). While there is epidemiologic evidence favoring the WC-T2D association, its biological substantiation is generally weak. Our objective was to determine the independent association of plasma lipid repertoire with WC.
Design and methods
We used samples and data from the San Antonio Family Heart Study of 1208 Mexican Americans from 42 extended families. We determined association of plasma lipidomic profiles with the cross-sectionally assessed WC. Plasma lipidomic profiling entailed liquid chromatography with mass spectrometry. Statistical analyses included multivariable polygenic regression models and bivariate trait analyses using the SOLAR software.
Results
After adjusting for age and sex interactions, body mass index, homeostasis model of assessment – insulin resistance, total cholesterol, triglycerides, high density lipoproteins and use of lipid lowering drugs, dihydroceramides as a class were associated with WC. Dihydroceramide species 18:0, 20:0, 22:0 and 24:1 were significantly associated and genetically correlated with WC. Two sphingomyelin species (31:1 and 41:1) were also associated with WC.
Conclusions
Plasma dihydroceramide levels independently associate with WC. Thus, high resolution plasma lipidomic studies can provide further credence to the biological underpinnings of the association of WC with T2D.
doi:10.1002/oby.20598
PMCID: PMC3918249  PMID: 23929697
waist circumference; lipidomics; central obesity; family studies; Mexican Americans
6.  Data for Genetic Analysis Workshop 18: human whole genome sequence, blood pressure, and simulated phenotypes in extended pedigrees 
BMC Proceedings  2014;8(Suppl 1):S2.
Genetic Analysis Workshop 18 (GAW18) focused on identification of genes and functional variants that influence complex phenotypes in human sequence data. Data for the workshop were donated by the T2D-GENES Consortium and included whole genome sequences for odd-numbered autosomes in 464 key individuals selected from 20 Mexican American families, a dense set of single-nucleotide polymorphisms in 959 individuals in these families, and longitudinal data on systolic and diastolic blood pressure measured at 1-4 examinations over a period of 20 years. Simulated phenotypes were generated based on the real sequence data and pedigree structures. In the design of the simulation model, gene expression measures from the San Antonio Family Heart Study (not distributed as part of the GAW18 data) were used to identify genes whose mRNA levels were correlated with blood pressure. Observed variants within these genes were designated as functional in the GAW18 simulation if they were nonsynonymous and predicted to have deleterious effects on protein function or if they were noncoding and associated with mRNA levels. Two simulated longitudinal phenotypes were modeled to have the same trait distributions as the real systolic and diastolic blood pressure data, with effects of age, sex, and medication use, including a genotype-medication interaction. For each phenotype, more than 1000 sequence variants in more than 200 genes present on the odd-numbered autosomes individually explained less than 0.01-2.78% of phenotypic variance. Cumulatively, variants in the most influential gene explained 7.79% of trait variance. An additional simulated phenotype, Q1, was designed to be correlated among family members but to not be associated with any sequence variants. Two hundred replicates of the phenotypes were simulated, with each including data for 849 individuals.
doi:10.1186/1753-6561-8-S1-S2
PMCID: PMC4145406  PMID: 25519314
7.  Pedigree-based random effect tests to screen gene pathways 
BMC Proceedings  2014;8(Suppl 1):S100.
The new generation of sequencing platforms opens new horizons in the genetics field. It is possible to exhaustively assay all genetic variants in an individual and search for phenotypic associations. The whole genome sequencing approach, when applied to a large human sample like the San Antonio Family Study, detects a very large number (>25 million) of single nucleotide variants along with other more complex variants. The analytical challenges imposed by this number of variants are formidable, suggesting that methods are needed to reduce the overall number of statistical tests. In this study, we develop a single degree-of-freedom test of variants in a gene pathway employing a random effect model that uses an empirical pathway-specific genetic relationship matrix as the focal covariance kernel. The empirical pathway-specific genetic relationship uses all variants (or a chosen subset) from gene members of a given biological pathway. Using SOLAR's pedigree-based variance components modeling, which also allows for arbitrary fixed effects, such as principal components, to deal with latent population structure, we employ a likelihood ratio test of the pathway-specific genetic relationship matrix model. We examine all gene pathways in KEGG database gene pathways using our method in the first replicate of the Genetic Analysis Workshop 18 simulation of systolic blood pressure. Our random effect approach was able to detect true association signals in causal gene pathways. Those pathways could be easily be further dissected by the independent analysis of all markers.
doi:10.1186/1753-6561-8-S1-S100
PMCID: PMC4143680  PMID: 25519354
8.  Evaluation of estimated genetic values and their application to genome-wide investigation of systolic blood pressure 
BMC Proceedings  2014;8(Suppl 1):S66.
The concept of breeding values, an individual's phenotypic deviation from the population mean as a result of the sum of the average effects of the genes they carry, is of great importance in livestock, aquaculture, and cash crop industries where emphasis is placed on an individual's potential to pass desirable phenotypes on to the next generation. As breeding or genetic values (as referred to here) cannot be measured directly, estimated genetic values (EGVs) are based on an individual's own phenotype, phenotype information from relatives, and, increasingly, genetic data. Because EGVs represent additive genetic variation, calculating EGVs in an extended human pedigree is expected to provide a more refined phenotype for genetic analyses. To test the utility of EGVs in genome-wide association, EGVs were calculated for 847 members of 20 extended Mexican American families based on 100 replicates of simulated systolic blood pressure. Calculations were performed in GAUSS to solve a variation on the standard Best Linear Unbiased Predictor (BLUP) mixed model equation with age, sex, and the first 3 principal components of sample-wide genetic variability as fixed effects and the EGV as a random effect distributed around the relationship matrix. Three methods of calculating kinship were considered: expected kinship from pedigree relationships, empirical kinship from common variants, and empirical kinship from both rare and common variants. Genome-wide association analysis was conducted on simulated phenotypes and EGVs using the additive measured genotype approach in the SOLAR software package. The EGV-based approach showed only minimal improvement in power to detect causative loci.
doi:10.1186/1753-6561-8-S1-S66
PMCID: PMC4143678  PMID: 25519398
9.  Loss-of-function mutations in SLC30A8 protect against type 2 diabetes 
Flannick, Jason | Thorleifsson, Gudmar | Beer, Nicola L. | Jacobs, Suzanne B. R. | Grarup, Niels | Burtt, Noël P. | Mahajan, Anubha | Fuchsberger, Christian | Atzmon, Gil | Benediktsson, Rafn | Blangero, John | Bowden, Don W. | Brandslund, Ivan | Brosnan, Julia | Burslem, Frank | Chambers, John | Cho, Yoon Shin | Christensen, Cramer | Douglas, Desirée A. | Duggirala, Ravindranath | Dymek, Zachary | Farjoun, Yossi | Fennell, Timothy | Fontanillas, Pierre | Forsén, Tom | Gabriel, Stacey | Glaser, Benjamin | Gudbjartsson, Daniel F. | Hanis, Craig | Hansen, Torben | Hreidarsson, Astradur B. | Hveem, Kristian | Ingelsson, Erik | Isomaa, Bo | Johansson, Stefan | Jørgensen, Torben | Jørgensen, Marit Eika | Kathiresan, Sekar | Kong, Augustine | Kooner, Jaspal | Kravic, Jasmina | Laakso, Markku | Lee, Jong-Young | Lind, Lars | Lindgren, Cecilia M | Linneberg, Allan | Masson, Gisli | Meitinger, Thomas | Mohlke, Karen L | Molven, Anders | Morris, Andrew P. | Potluri, Shobha | Rauramaa, Rainer | Ribel-Madsen, Rasmus | Richard, Ann-Marie | Rolph, Tim | Salomaa, Veikko | Segrè, Ayellet V. | Skärstrand, Hanna | Steinthorsdottir, Valgerdur | Stringham, Heather M. | Sulem, Patrick | Tai, E Shyong | Teo, Yik Ying | Teslovich, Tanya | Thorsteinsdottir, Unnur | Trimmer, Jeff K. | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Vaziri-Sani, Fariba | Voight, Benjamin F. | Wilson, James G. | Boehnke, Michael | McCarthy, Mark I. | Njølstad, Pål R. | Pedersen, Oluf | Groop, Leif | Cox, David R. | Stefansson, Kari | Altshuler, David
Nature genetics  2014;46(4):357-363.
Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1,2,3, yet none are described for type 2 diabetes (T2D). Through sequencing or genotyping ~150,000 individuals across five ethnicities, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8)4 and harbors a common variant (p.Trp325Arg) associated with T2D risk, glucose, and proinsulin levels5–7. Collectively, protein-truncating variant carriers had 65% reduced T2D risk (p=1.7×10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34SerfsX50) demonstrated reduced glucose levels (−0.17 s.d., p=4.6×10−4). The two most common protein-truncating variants (p.Arg138X and p.Lys34SerfsX50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested reduced zinc transport increases T2D risk8,9, yet phenotypic heterogeneity was observed in rodent Slc30a8 knockouts10–15. Contrastingly, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, proposing ZnT8 inhibition as a therapeutic strategy in T2D prevention.
doi:10.1038/ng.2915
PMCID: PMC4051628  PMID: 24584071
10.  Increased waist circumference is independently associated with hypothyroidism in Mexican Americans: replicative evidence from two large, population-based studies 
Background
Mexican Americans are at an increased risk of both thyroid dysfunction and metabolic syndrome (MS). Thus it is conceivable that some components of the MS may be associated with the risk of thyroid dysfunction in these individuals. Our objective was to investigate and replicate the potential association of MS traits with thyroid dysfunction in Mexican Americans.
Methods
We conducted association testing for 18 MS traits in two large studies on Mexican Americans – the San Antonio Family Heart Study (SAFHS) and the National Health and Nutrition Examination Survey (NHANES) 2007–10. A total of 907 participants from 42 families in SAFHS and 1633 unrelated participants from NHANES 2007–10 were included in this study. The outcome measures were prevalence of clinical and subclinical hypothyroidism and thyroid function index (TFI) – a measure of thyroid function. For the SAFHS, we used polygenic regression analyses with multiple covariates to test associations in setting of family studies. For the NHANES 2007–10, we corrected for the survey design variables as needed for association analyses in survey data. In both datasets, we corrected for age, sex and their linear and quadratic interactions.
Results
TFI was an accurate indicator of clinical thyroid status (area under the receiver-operating-characteristic curve to detect clinical hypothyroidism, 0.98) in both SAFHS and NHANES 2007–10. Of the 18 MS traits, waist circumference (WC) showed the most consistent association with TFI in both studies independently of age, sex and body mass index (BMI). In the SAFHS and NHANES 2007–10 datasets, each standard deviation increase in WC was associated with 0.13 (p < 0.001) and 0.11 (p < 0.001) unit increase in the TFI, respectively. In a series of polygenic and linear regression models, central obesity (defined as WC ≥ 102 cm in men and ≥88 cm in women) was associated with clinical and subclinical hypothyroidism independent of age, sex, BMI and type 2 diabetes in both datasets. Estimated prevalence of hypothyroidism was consistently high in those with central obesity, especially below 45y of age.
Conclusions
WC independently associates with increased risk of thyroid dysfunction. Use of WC to identify Mexican American subjects at high risk of thyroid dysfunction should be investigated in future studies.
doi:10.1186/1472-6823-14-46
PMCID: PMC4057819  PMID: 24913450
Waist circumference; Central obesity; Thyroid dysfunction; Mexican Americans
11.  Utilizing extended pedigree information for discovery and confirmation of copy number variable regions among Mexican Americans 
Copy number variation (CNV) remains poorly defined in many populations, including Mexican Americans. We report the discovery and genetic confirmation of copy number variable regions (CNVRs) in subjects of the San Antonio Family Heart and the San Antonio Family Diabetes Gallbladder Studies, both comprised of multigenerational pedigrees of Mexican American descent. In a discovery group of 1677 participants genotyped using Illumina Infinium Beadchips, we identified 2937 unique CNVRs, some with observation frequencies as low as 0.002, using a process that integrates pedigree information with CNV calls made by PennCNV and/or QuantiSNP. Quantitative copy number values had statistically significant (P≤1.792e-5) heritability estimates ranging from 0.139 to 0.863 for 2776 CNVRs. Additionally, 920 CNVRs showed evidence of linkage to their genomic location, providing strong genetic confirmation. Linked CNVRs were enriched in a set of independently identified CNVRs from a second group of 380 samples, confirming that these CNVRs can be used as predefined CNVRs of high confidence. Interestingly, we identified 765 putatively novel variants that do not overlap with the Database of Genomic Variants. This study is the first to use linkage and heritability in multigenerational pedigrees as a confirmation approach for the discovery of CNVRs, and the largest study to date investigating copy number variation on a genome-wide scale in individuals of Mexican American descent. These results provide insight to the structural variation present in Mexican Americans and show the strength of multigenerational pedigrees to elucidate structural variation in the human genome.
doi:10.1038/ejhg.2012.188
PMCID: PMC3598314  PMID: 22909773
copy number variation; Mexican Americans; MODY5; pedigree CNVRs; pedigree
12.  The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data 
Thompson, Paul M. | Stein, Jason L. | Medland, Sarah E. | Hibar, Derrek P. | Vasquez, Alejandro Arias | Renteria, Miguel E. | Toro, Roberto | Jahanshad, Neda | Schumann, Gunter | Franke, Barbara | Wright, Margaret J. | Martin, Nicholas G. | Agartz, Ingrid | Alda, Martin | Alhusaini, Saud | Almasy, Laura | Almeida, Jorge | Alpert, Kathryn | Andreasen, Nancy C. | Andreassen, Ole A. | Apostolova, Liana G. | Appel, Katja | Armstrong, Nicola J. | Aribisala, Benjamin | Bastin, Mark E. | Bauer, Michael | Bearden, Carrie E. | Bergmann, Ørjan | Binder, Elisabeth B. | Blangero, John | Bockholt, Henry J. | Bøen, Erlend | Bois, Catherine | Boomsma, Dorret I. | Booth, Tom | Bowman, Ian J. | Bralten, Janita | Brouwer, Rachel M. | Brunner, Han G. | Brohawn, David G. | Buckner, Randy L. | Buitelaar, Jan | Bulayeva, Kazima | Bustillo, Juan R. | Calhoun, Vince D. | Cannon, Dara M. | Cantor, Rita M. | Carless, Melanie A. | Caseras, Xavier | Cavalleri, Gianpiero L. | Chakravarty, M. Mallar | Chang, Kiki D. | Ching, Christopher R. K. | Christoforou, Andrea | Cichon, Sven | Clark, Vincent P. | Conrod, Patricia | Coppola, Giovanni | Crespo-Facorro, Benedicto | Curran, Joanne E. | Czisch, Michael | Deary, Ian J. | de Geus, Eco J. C. | den Braber, Anouk | Delvecchio, Giuseppe | Depondt, Chantal | de Haan, Lieuwe | de Zubicaray, Greig I. | Dima, Danai | Dimitrova, Rali | Djurovic, Srdjan | Dong, Hongwei | Donohoe, Gary | Duggirala, Ravindranath | Dyer, Thomas D. | Ehrlich, Stefan | Ekman, Carl Johan | Elvsåshagen, Torbjørn | Emsell, Louise | Erk, Susanne | Espeseth, Thomas | Fagerness, Jesen | Fears, Scott | Fedko, Iryna | Fernández, Guillén | Fisher, Simon E. | Foroud, Tatiana | Fox, Peter T. | Francks, Clyde | Frangou, Sophia | Frey, Eva Maria | Frodl, Thomas | Frouin, Vincent | Garavan, Hugh | Giddaluru, Sudheer | Glahn, David C. | Godlewska, Beata | Goldstein, Rita Z. | Gollub, Randy L. | Grabe, Hans J. | Grimm, Oliver | Gruber, Oliver | Guadalupe, Tulio | Gur, Raquel E. | Gur, Ruben C. | Göring, Harald H. H. | Hagenaars, Saskia | Hajek, Tomas | Hall, Geoffrey B. | Hall, Jeremy | Hardy, John | Hartman, Catharina A. | Hass, Johanna | Hatton, Sean N. | Haukvik, Unn K. | Hegenscheid, Katrin | Heinz, Andreas | Hickie, Ian B. | Ho, Beng-Choon | Hoehn, David | Hoekstra, Pieter J. | Hollinshead, Marisa | Holmes, Avram J. | Homuth, Georg | Hoogman, Martine | Hong, L. Elliot | Hosten, Norbert | Hottenga, Jouke-Jan | Hulshoff Pol, Hilleke E. | Hwang, Kristy S. | Jack, Clifford R. | Jenkinson, Mark | Johnston, Caroline | Jönsson, Erik G. | Kahn, René S. | Kasperaviciute, Dalia | Kelly, Sinead | Kim, Sungeun | Kochunov, Peter | Koenders, Laura | Krämer, Bernd | Kwok, John B. J. | Lagopoulos, Jim | Laje, Gonzalo | Landen, Mikael | Landman, Bennett A. | Lauriello, John | Lawrie, Stephen M. | Lee, Phil H. | Le Hellard, Stephanie | Lemaître, Herve | Leonardo, Cassandra D. | Li, Chiang-shan | Liberg, Benny | Liewald, David C. | Liu, Xinmin | Lopez, Lorna M. | Loth, Eva | Lourdusamy, Anbarasu | Luciano, Michelle | Macciardi, Fabio | Machielsen, Marise W. J. | MacQueen, Glenda M. | Malt, Ulrik F. | Mandl, René | Manoach, Dara S. | Martinot, Jean-Luc | Matarin, Mar | Mather, Karen A. | Mattheisen, Manuel | Mattingsdal, Morten | Meyer-Lindenberg, Andreas | McDonald, Colm | McIntosh, Andrew M. | McMahon, Francis J. | McMahon, Katie L. | Meisenzahl, Eva | Melle, Ingrid | Milaneschi, Yuri | Mohnke, Sebastian | Montgomery, Grant W. | Morris, Derek W. | Moses, Eric K. | Mueller, Bryon A. | Muñoz Maniega, Susana | Mühleisen, Thomas W. | Müller-Myhsok, Bertram | Mwangi, Benson | Nauck, Matthias | Nho, Kwangsik | Nichols, Thomas E. | Nilsson, Lars-Göran | Nugent, Allison C. | Nyberg, Lars | Olvera, Rene L. | Oosterlaan, Jaap | Ophoff, Roel A. | Pandolfo, Massimo | Papalampropoulou-Tsiridou, Melina | Papmeyer, Martina | Paus, Tomas | Pausova, Zdenka | Pearlson, Godfrey D. | Penninx, Brenda W. | Peterson, Charles P. | Pfennig, Andrea | Phillips, Mary | Pike, G. Bruce | Poline, Jean-Baptiste | Potkin, Steven G. | Pütz, Benno | Ramasamy, Adaikalavan | Rasmussen, Jerod | Rietschel, Marcella | Rijpkema, Mark | Risacher, Shannon L. | Roffman, Joshua L. | Roiz-Santiañez, Roberto | Romanczuk-Seiferth, Nina | Rose, Emma J. | Royle, Natalie A. | Rujescu, Dan | Ryten, Mina | Sachdev, Perminder S. | Salami, Alireza | Satterthwaite, Theodore D. | Savitz, Jonathan | Saykin, Andrew J. | Scanlon, Cathy | Schmaal, Lianne | Schnack, Hugo G. | Schork, Andrew J. | Schulz, S. Charles | Schür, Remmelt | Seidman, Larry | Shen, Li | Shoemaker, Jody M. | Simmons, Andrew | Sisodiya, Sanjay M. | Smith, Colin | Smoller, Jordan W. | Soares, Jair C. | Sponheim, Scott R. | Sprooten, Emma | Starr, John M. | Steen, Vidar M. | Strakowski, Stephen | Strike, Lachlan | Sussmann, Jessika | Sämann, Philipp G. | Teumer, Alexander | Toga, Arthur W. | Tordesillas-Gutierrez, Diana | Trabzuni, Daniah | Trost, Sarah | Turner, Jessica | Van den Heuvel, Martijn | van der Wee, Nic J. | van Eijk, Kristel | van Erp, Theo G. M. | van Haren, Neeltje E. M. | van ‘t Ent, Dennis | van Tol, Marie-Jose | Valdés Hernández, Maria C. | Veltman, Dick J. | Versace, Amelia | Völzke, Henry | Walker, Robert | Walter, Henrik | Wang, Lei | Wardlaw, Joanna M. | Weale, Michael E. | Weiner, Michael W. | Wen, Wei | Westlye, Lars T. | Whalley, Heather C. | Whelan, Christopher D. | White, Tonya | Winkler, Anderson M. | Wittfeld, Katharina | Woldehawariat, Girma | Wolf, Christiane | Zilles, David | Zwiers, Marcel P. | Thalamuthu, Anbupalam | Schofield, Peter R. | Freimer, Nelson B. | Lawrence, Natalia S. | Drevets, Wayne
Brain Imaging and Behavior  2014;8(2):153-182.
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA’s first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
doi:10.1007/s11682-013-9269-5
PMCID: PMC4008818  PMID: 24399358
Genetics; MRI; GWAS; Consortium; Meta-analysis; Multi-site
13.  A Genome-Wide Search for Linkage of Estimated Glomerular Filtration Rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND) 
PLoS ONE  2013;8(12):e81888.
Objective
Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR.
Methods
Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula.
Results
The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4×10−5) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5×10−4) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5×10−4) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome.
Conclusion
The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers for DN.
doi:10.1371/journal.pone.0081888
PMCID: PMC3866106  PMID: 24358131
15.  The Gly(972)Arg Variant of Human IRS1 Gene Is Associated With Variation in Glomerular Filtration Rate Likely Through Impaired Insulin Receptor Signaling 
Diabetes  2012;61(9):2385-2393.
The objective of this study is to identify and characterize the genetic variants related to the glomerular filtration rate (GFR) linkage on 2q37. Of the positional candidate genes, we selected IRS1 and resequenced its 2-kb promoter region and exons for sequence variants in 32 subjects. A total of 11 single nucleotide polymorphisms (SNPs) were identified. To comprehensively cover the 59-kb-long intron-1, eight additional tagging SNPs were selected from the HapMap. All the 19 SNPs were genotyped by TaqMan Assay in the entire data set (N = 670; 39 families). Association analyses between the SNPs and GFR and type 2 diabetes–related traits were performed using the measured genotype approach. Of the SNPs examined for association, only the Gly(972)Arg variant of IRS1 exhibited a significant association with GFR (P = 0.0006) and serum triglycerides levels (P = 0.003), after accounting for trait-specific covariate effects. Carriers of Arg972 had significantly decreased GFR values. Gly(972)Arg contributed to 26% of the linkage signal on 2q. Expression of IRS1 mutant Arg972 in human mesangial cells significantly reduced the insulin-stimulated phosphorylation of IRS1 and Akt kinase. Taken together, the data provide the first evidence that genetic variation in IRS1 may influence variation in GFR probably through impaired insulin receptor signaling.
doi:10.2337/db11-1078
PMCID: PMC3425400  PMID: 22617042
16.  Waist Circumference Independently Associates with the Risk of Insulin Resistance and Type 2 Diabetes in Mexican American Families 
PLoS ONE  2013;8(3):e59153.
Objective
In spite of the growing recognition of the specific association of waist circumference (WC) with type 2 diabetes (T2D) and insulin resistance (IR), current guidelines still use body mass index (BMI) as a tool of choice. Our objective was to determine whether WC is a better T2D predictor than BMI in family-based settings.
Research Design and Methods
Using prospectively collected data on 808 individuals from 42 extended Mexican American families representing 7617.92 person-years follow-up, we examined the performance of WC and BMI as predictors of cumulative and incident risk of T2D. We used robust statistical methods that accounted for the kinships and included polygenic models, discrete trait modeling, Akaike information criterion, odds ratio (OR), relative risk (RR) and Kullback-Leibler R2. SOLAR software was used to conduct all the data analyses.
Results
We found that in multivariate polygenic models, WC was an independent predictor of cumulative (OR = 2.76, p = 0.0002) and future risk of T2D (RR = 2.15, p = 3.56×10−9) and outperformed BMI when compared in a head-to-head fashion. High WC (≥94.65 cm after adjusting for age and sex) was also associated with high fasting glucose, insulin and triglyceride levels and low high-density lipoprotein levels indicating a potential association with IR. Moreover, WC was specifically and significantly associated with insulin resistant T2D (OR = 4.83, p = 1.01×10−13).
Conclusions
Our results demonstrate the value of using WC as a screening tool of choice for future risk of T2D in Mexican American families. Also, WC is specifically associated with insulin resistant T2D.
doi:10.1371/journal.pone.0059153
PMCID: PMC3594157  PMID: 23536864
17.  Genetic variants in Transient Receptor Potential cation channel, subfamily M 1 (TRPM1) and their risk of albuminuria-related traits in Mexican Americans 
Background
Evidence for linkage of albuminuria to GABRB3 marker region on chromosome 15q12 was previously reported in Mexican Americans. The objective of this study is to scan a positional candidate gene, Transient Receptor Potential cation channel, subfamily M 1 (TRPM1), for genetic variants that may contribute to the variation in albumin-to-creatinine ratio (ACR).
Methods
To identify the sequence variants, the exons and 2 kb putative promoter region of TRPM1 were PCR amplified and sequenced in 32 selected individuals. Identified variants were genotyped in the entire data set (N=670; 39 large families) by TaqMan assays. Association analyses between the sequence variants and ACR, type 2 diabetes (T2DM) and related phenotypes were carried out using a measured genotype approach as implemented in the program SOLAR.
Results
Sequencing analysis identified 18 single nucleotide polymorphisms (SNPs) including 8 SNPs in the coding regions, 7 SNPs in the promoter region and 3 SNPs in introns. Of the 8 SNPs identified in the coding regions, 3 were non synonymous [Met(1)Thr, Ser(32)Asn, Val(1395)Ile] and one SNP caused stop codon (Glu1375/*). Of the SNPs examined, none of them exhibited statistically significant association with ACR after accounting for the effect of age, sex, diabetes, duration of diabetes, systolic blood pressure and anti-hypertensive medications. However, a SNP (rs11070811) located in the putative promoter region showed a modest association with triglycerides levels (P = 0.039).
Conclusion
The present investigation found no evidence for an association between sequence variation at the TRPM1 gene and ACR in Mexican Americans, although it appears to have modest influence on T2DM risk factors.
doi:10.1016/j.cca.2011.03.024
PMCID: PMC3206641  PMID: 21439949
TRPM1; Type 2 diabetes; Albumin to creatinine ration; polymorphisms; association analysis; Mexican Americans
18.  Genetic Factors Influence Serological Measures of Common Infections 
Human Heredity  2011;72(2):133-141.
Background/Aims
Antibodies against infectious pathogens provide information on past or present exposure to infectious agents. While host genetic factors are known to affect the immune response, the influence of genetic factors on antibody levels to common infectious agents is largely unknown. Here we test whether antibody levels for 13 common infections are significantly heritable.
Methods
IgG antibodies to Chlamydophila pneumoniae, Helicobacter pylori, Toxoplasma gondii, adenovirus 36 (Ad36), hepatitis A virus, influenza A and B, cytomegalovirus, Epstein-Barr virus, herpes simplex virus (HSV)-1 and −2, human herpesvirus-6, and varicella zoster virus were determined for 1,227 Mexican Americans. Both quantitative and dichotomous (seropositive/seronegative) traits were analyzed. Influences of genetic and shared environmental factors were estimated using variance components pedigree analysis, and sharing of underlying genetic factors among traits was investigated using bivariate analyses.
Results
Serological phenotypes were significantly heritable for most pathogens (h2 = 0.17–0.39), except for Ad36 and HSV-2. Shared environment was significant for several pathogens (c2 = 0.10–0.32). The underlying genetic etiology appears to be largely different for most pathogens.
Conclusions
Our results demonstrate, for the first time for many of these pathogens, that individual genetic differences of the human host contribute substantially to antibody levels to many common infectious agents, providing impetus for the identification of underlying genetic variants, which may be of clinical importance.
doi:10.1159/000331220
PMCID: PMC3214928  PMID: 21996708
Pathogen; Infection; Antibody; Serology; Genetics; Heritability; Mexican Americans
19.  Wide disparity in genetic admixture among Mexican Americans from San Antonio, TX 
Annals of human genetics  2011;75(4):529-538.
SUMMARY
We studied 706 participants of the San Antonio Family Diabetes Study (SAFDS) and 586 male samples from the San Antonio Center for Biomarkers of Risk of Prostate Cancer (SABOR) and used 64 ancestry informative markers to compare admixture proportions in the two groups. Existence of population substructure was demonstrated by the excess association of unlinked markers. Further, the ancestral proportions differed significantly between the two study groups. In the SAFDS sample, the proportions were estimated at 50.2± 0.6% European, 46.4 ± 0.6% Native American, and 3.1 ± 0.2% West African. For the SABOR study sample, the proportions were 58.9 ± 0.7%, 38.2 ± 0.7% and 2.9 ± 0.2%, respectively. Additionally, in the SAFDS subjects a highly significant negative correlation was found between individual Native American ancestry and skin reflectance (R2=0.07, p=0.00006). The correlation was stronger in males than in females but clearly show that ancestry only accounts for a small percentage of the variation in skin color and, conversely, that skin reflectance is not a robust surrogate for genetic admixture. Furthermore, a substantial difference in substructure is present in the two cohorts of Mexican American subjects from the San Antonio area in Texas, which emphasizes that genetic admixture estimates should be accounted for in association studies, even for geographically related subjects.
doi:10.1111/j.1469-1809.2011.00655.x
PMCID: PMC3115480  PMID: 21592109
admixture; skin reflectance; Mexican Americans
20.  Genomewide Linkage Scan for Diabetic Renal Failure and Albuminuria: The FIND Study 
American Journal of Nephrology  2011;33(5):381-389.
Background
Diabetic nephropathy (DN) is a leading cause of mortality and morbidity in patients with type 1 and type 2 diabetes. The multicenter FIND consortium aims to identify genes for DN and its associated quantitative traits, e.g. the urine albumin:creatinine ratio (ACR). Herein, the results of whole-genome linkage analysis and a sparse association scan for ACR and a dichotomous DN phenotype are reported in diabetic individuals.
Methods
A genomewide scan comprising more than 5,500 autosomal single nucleotide polymorphism markers (average spacing of 0.6 cM) was performed on 1,235 nuclear and extended pedigrees (3,972 diabetic participants) ascertained for DN from African-American (AA), American-Indian (AI), European-American (EA) and Mexican-American (MA) populations.
Results
Strong evidence for linkage to DN was detected on chromosome 6p (p = 8.0 × 10−5, LOD = 3.09) in EA families as well as suggestive evidence for linkage to chromosome 7p in AI families. Regions on chromosomes 3p in AA, 7q in EA, 16q in AA and 22q in MA displayed suggestive evidence of linkage for urine ACR. The linkage peak on chromosome 22q overlaps the MYH9/APOL1 gene region, previously implicated in AA diabetic and nondiabetic nephropathies.
Conclusion
These results strengthen the evidence for previously identified genomic regions and implicate several novel loci potentially involved in the pathogenesis of DN.
doi:10.1159/000326763
PMCID: PMC3078269  PMID: 21454968
Albuminuria; Diabetes mellitus; Renal failure; End-stage renal disease; Linkage; Allelic association
21.  Endothelial Nitric Oxide Synthase (eNOS) gene polymorphisms and their association with Type 2 diabetes related traits in Mexican Americans 
Genetic variants of the eNOS gene such as T-786C, Glu298Asp, and 27bp-VNTR have been examined for their association with type 2 diabetes (T2DM)-related traits in different populations but not in Mexican Americans. However, the results from such studies have been controversial. This study investigated whether these three polymorphisms are associated with T2DM and its related traits in Mexican Americans, a population at high risk for T2DM and its complications. The study participants (N = 670; 39 families) were genotyped for the three polymorphisms using polymerase chain reaction followed by restriction fragment length polymorphism assay. Association analyses between these polymorphisms and T2DM and its related phenotypes were carried out using a measured genotype approach as implemented in the computer program SOLAR. Of the variants examined, only the 27bp-VNTR variant exhibited significant association with high density lipoprotein cholesterol (HDL-C) (P = 0.04) and diastolic blood pressure (DBP) levels (P = 0.02) after accounting for trait-specific covariates. The carriers of the rare allele (27bp-VNTR-4a) are associated with decreased HDL-C and increased DBP levels. In conclusion, of the genetic polymorphisms examined at the eNOS locus, only 27bp-VNTR appears to be a minor contributor to the variation in T2DM-related traits in Mexican Americans.
doi:10.3132/dvdr.2008.018
PMCID: PMC3336872  PMID: 18537098
eNOS gene; type 2 diabetes; genetic polymorphisms; association analyses; Mexican Americans
22.  Do rare variant genotypes predict common variant genotypes? 
BMC Proceedings  2011;5(Suppl 9):S87.
The synthetic association hypothesis proposes that common genetic variants detectable in genome-wide association studies may reflect the net phenotypic effect of multiple rare polymorphisms distributed broadly within the focal gene rather than, as often assumed, the effect of common functional variants in high linkage disequilibrium with the focal marker. In a recent study, Dickson and colleagues demonstrated synthetic association in simulations and in two well-characterized, highly polymorphic human disease genes. The converse of this hypothesis is that rare variant genotypes must be correlated with common variant genotypes often enough to make the phenomenon of synthetic association possible. Here we used the exome genotype data provided for Genetic Analysis Workshop 17 to ask how often, how well, and under what conditions rare variant genotypes predict the genotypes of common variants within the same gene. We found nominal evidence of correlation between rare and common variants in 21-30% of cases examined for unrelated individuals; this rate increased to 38-44% for related individuals, underscoring the segregation that underlies synthetic association.
doi:10.1186/1753-6561-5-S9-S87
PMCID: PMC3287928  PMID: 22373504
23.  Cortical Thickness or Grey Matter Volume? The Importance of Selecting the Phenotype for Imaging Genetics Studies 
NeuroImage  2009;53(3):1135-1146.
Choosing the appropriate neuroimaging phenotype is critical to successfully identify genes that influence brain structure or function. While neuroimaging methods provide numerous potential phenotypes, their role for imaging genetics studies are unclear. Here we examine the relationship between brain volume, grey matter volume, cortical thickness and surface area, from a genetic standpoint. Four hundred and eighty-six individuals from randomly ascertained extended pedigrees with high-quality T1-weighted neuroanatomic MRI images participated in the study. Surface-based and voxel-based representations of brain structure were derived, using automated methods, and these measurements were analysed using a variance-components method to identify the heritability of these traits and their genetic correlations. All neuroanatomic traits were significantly influenced by genetic factors. Cortical thickness and surface area measurements were found to be genetically and phenotypically independent. While both thickness and area influenced volume measurements of cortical grey matter, volume was more closely related to surface area than cortical thickness. This trend was observed for both the volume-based and surface-based techniques. The results suggest that surface area and cortical thickness measurements should be considered separately and preferred over gray matter volumes for imaging genetic studies.
doi:10.1016/j.neuroimage.2009.12.028
PMCID: PMC2891595  PMID: 20006715
brain cortical thickness; brain surface area; heritability
24.  On the genetic architecture of cortical folding and brain volume in primates 
NeuroImage  2010;53(3):1103-1108.
Understanding the evolutionary forces that produced the human brain is a central problem in neuroscience and human biology. Comparisons across primate species show that both brain volume and gyrification (the degree of folding in the cerebral cortex) have progressively increased during primate evolution and there is a strong positive correlation between these two traits across primate species. The human brain is exceptional among primates in both total volume and gyrification, and therefore understanding the genetic mechanisms influencing variation in these traits will improve our understanding of a landmark feature of our species. Here we show that individual variation in gyrification is significantly heritable in both humans and an Old World monkey (baboons, Papio hamadryas). Furthermore, contrary to expectations based on the positive phenotypic correlation across species, the genetic correlation between cerebral volume and gyrification within both humans and baboons is estimated as negative. These results suggest that the positive relationship between cerebral volume and cortical folding across species cannot be explained by one set of selective pressures or genetic changes. Our data suggest that one set of selective pressures favored the progressive increase in brain volume documented in the primate fossil record, and that a second independent selective process, possibly related to parturition and neonatal brain size, may have favored brains with progressively greater cortical folding. Without a second separate selective pressure, natural selection favoring increased brain volume would be expected to produce less folded, more lissencephalic brains. These results provide initial evidence for the heritability of gyrification, and possibly a new perspective on the evolutionary mechanisms underlying long-term changes in the nonhuman primate and human brain.
doi:10.1016/j.neuroimage.2010.02.020
PMCID: PMC3137430  PMID: 20176115
25.  Genome-Wide Linkage Screen for Systolic Blood Pressure in the Veterans Administration Genetic Epidemiology Study (VAGES) of Mexican-Americans and Confirmation of a Major Susceptibility Locus on Chromosome 6q14.1 
Human Heredity  2011;71(1):1-10.
Objective
Hypertension or high blood pressure is a strong correlate of diseases such as obesity and type 2 diabetes. We conducted a genome-wide linkage screen to identify susceptibility genes influencing systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Mexican-Americans from the Veterans Administration Genetic Epidemiology Study (VAGES).
Methods
Using data from 1,089 individuals distributed across 266 families, we performed a multipoint linkage analysis to localize susceptibility loci for SBP and DBP by applying two models. In model 1, we added a sensible constant to the observed BP values in treated subjects [Tobin et al.; Stat Med 2005;24:2911–2935] to account for antihypertensive use (i.e. 15 and 10 mm Hg to SBP and DBP values, respectively). In model 2, we fixed values of 140 mm Hg for SBP and 90 mm Hg for DBP, if the treated values were less than the standard referenced treatment thresholds of 140/90 mm Hg for hypertensive status. However, if the observed treated BP values were found to be above these standard treatment thresholds, the actual observed treated BP values were retained in order not to reduce them by substitution of the treatment threshold values.
Results
The multipoint linkage analysis revealed strong linkage signals for SBP compared with DBP. The strongest evidence for linkage of SBP (model 1, LOD = 5.0; model 2, LOD = 3.6) was found on chromosome 6q14.1 near the marker D6S1031 (89 cM) in both models. In addition, some evidence for SBP linkage occurred on chromosomes 1q, 4p, and 16p. Most importantly, our major SBP linkage finding on chromosome 6q near marker D6S1031 was independently confirmed in a Caucasian population (LOD = 3.3). In summary, our study found evidence for a major locus on chromosome 6q influencing SBP levels in Mexican-Americans.
doi:10.1159/000323143
PMCID: PMC3152483  PMID: 21293138
Hypertension; Linkage; Antihypertensive medication; Genetic location; Heritability

Results 1-25 (33)