Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  IQGAP1 regulates actin cytoskeleton organization in podocytes through interaction with nephrin 
Cellular signalling  2015;27(4):867-877.
Increasing data has shown that the cytoskeletal reorganization of podocytes is involved in the onset of proteinuria and the progression of glomerular disease. Nephrin behaves as a signal sensor of the slit diaphragm to transmit cytoskeletal signals to maintain the unique structure of podocytes. However, the nephrin signaling cascade deserves further study. IQGAP1 is a scaffolding protein with the ability to regulate cytoskeletal organization. It is hypothesized that IQGAP1 contributes to actin reorganization in podocytes through interaction with nephrin. IQGAP1 expression and IQGAP1-nephrin colocalization in glomeruli were progressively decreased and then gradually recovered in line with the development of foot process fusion and proteinuria in puromycin aminonucleoside-injected rats. In cultured human podocytes, puromycin aminonucleoside-induced disruption of F-actin and disorders of migration and spreading were aggravated by IQGAP1 siRNA, and these effects were partially restored by a wild-type IQGAP1 plasmid. Furthermore, the cytoskeletal disorganization stimulated by cytochalasin D in COS7 cells was recovered by cotransfection with wild-type IQGAP1 and nephrin plasmids but was not recovered either by single transfection of the wild-type IQGAP1 plasmid or by cotransfection of mutant IQGAP1 [Δ1443(S → A)] and wild-type nephrin plasmids. Co-immunoprecipitation analysis using lysates of COS7 cells overexpressing nephrin and each derivative-domain molecule of IQGAP1 demonstrated that the poly-proline binding domain and RasGAP domain in the carboxyl terminus of IQGAP1 are the target modules that interact with nephrin. Collectively, these findings showed that activated IQGAP1, as an intracellular partner of nephrin, is involved in actin cytoskeleton organization and functional regulation of podocytes.
PMCID: PMC4356988  PMID: 25652011
Actin cytoskeleton; IQ domain GTPase-activating protein 1; Nephrin; Podocyte
2.  Modulation of Renin Angiotensin System Predominantly alters Sclerotic Phenotype of Glomeruli in HIVAN 
Histology and histopathology  2014;29(12):1575-1581.
HIV-associated nephropathy (HIVAN) is a common complication of HIV-1 infection in patients with African ancestry in general and with APOL1 gene risk variants in particular. Although collapsing glomerulopathy is considered a hallmark of HIVAN, significant numbers of glomeruli in patients with HIVAN also display other variants of focal segmental glomerulosclerosis (FSGS). We propose that collapsed glomeruli as well as glomeruli with other variants of FSGS are manifestations of HIVAN and their prevalence depends on associated host factors. We explored the role of the renin-angiotensin system (RAS) in the manifestation of any specific glomerular phenotype in HIVAN. To evaluate the role of the RAS we have used a genetically engineered mouse model of HIVAN (Tg26) with two and four copies of angiotensinogen (Agt) gene (Tg26/Agt2 and Tg26/Agt4). In Tg26/Agt2, 1 out of 6 glomeruli exhibited sclerosed phenotype, whereas 1 out of 25 glomeruli displayed collapsed phenotype; on the other hand, in Tg26/Agt4, 1 out of 3 glomeruli exhibited sclerotic phenotype and only 1 out of 7 glomeruli showed collapsed phenotype. To inhibit the effect of RAS, Tg26/Agt2 were administered captopril, aliskiren, aliskiren plus captopril or aliskiren plus telmisartan by miniosmotic pumps for 4 weeks. In all experimental groups there was a significant reduction in percentage of sclerosed glomeruli and only minimal reduction in collapsed glomeruli compared to normal saline receiving Tg26/Agt2. These findings suggest that the manifestation of the sclerosed phenotype in HIVAN is predominantly dependent on activation of the RAS.
PMCID: PMC4241129  PMID: 24892944
HIV-associated Nephropathy; Focal Glomerulosclerosis; Renin-angiotensin system; Angiotensinogen
3.  sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor 
Scientific Reports  2014;4:6660.
The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.
PMCID: PMC4205892  PMID: 25335547
4.  c-Abl mediates angiotensin II-induced apoptosis in podocytes 
Journal of molecular histology  2013;44(5):597-608.
Angiotensin II (Ang II) has been reported to cause podocyte apoptosis in rats both in vivo and in vitro studies. However, the underlying mechanisms are poorly understood. In the present study, we investigated the role of the nonreceptor tyrosine kinase c-Abl in Ang II-induced podocyte apoptosis.
Male Sprague-Dawley rats in groups of 12 were administered either Ang II (400 kg-1·kg-1·min-1) or Ang II + STI-571 (50 mg·kg-1·d-1) by osmotic minipumps. In addition, 12 rats-receiving normal saline served as the control. Glomeruli c-Abl expression was carried out by real time PCR, Western blotting and immunolabeled, and occurrence of apoptosis was carried out by TUNEL staining and transmission electron microscopic analysis. In vitro studies, conditionally immortalized mouse podocytes were treated with Ang II (10-9-10-6 M) in the presence or absence of either c-Abl inhibitor, Src-I1, specific c-Abl siRNA, or c-Abl plasmid alone. Quantification of podocyte c-Abl expression and c-Abl phosphorylation at Y245 and Y412 was carried out by real time PCR, Western blotting and immunofluorescence imaging. The nuclear c-Abl and p53 were quantified by co-immunoprecipitation and Western blotting studies. Podocyte apoptosis was analysed by flow cytometry and Hoechst-33342 staining.
c-Abl expression was demonstrated in rat kidney podocytes in vivo and cultured mouse podocytes in vitro. Ang II-receiving rats displayed enhanced podocyte c-Abl expression. And Ang II significantly stimulated c-Abl expression in cultured podocytes. Furthermore Ang II upregulated podocyte c-Abl phosphorylation at Y245 and Y412. Ang II also induced an increase of nuclear p53 protein and nuclear c-Abl-p53 complexes in podocytes and podocyte apoptosis. Down-regulation of c-Abl expression by c-Abl inhibitor (Src-I1) as well as specific siRNA inhibited Ang II-induced podocyte apoptosis; conversely, podoctyes transfected with c-Abl plasmid displayed enhanced apoptosis.
These findings indicate that c-Abl may mediates Ang II-induced podocyte apoptosis, and inhibition of c-Abl expression can protect podocytes from Ang II-induced injury.
PMCID: PMC3758790  PMID: 23515840
c-Abl; Apoptosis; Angiotensin II, Podocyte; p53
5.  Rab25 expression predicts poor prognosis in clear cell renal cell carcinoma 
Rab25 has been implicated in a number of types of cancer. However, its expression status and clinical implications in clear cell renal cell carcinoma (ccRCC) remain to be investigated. The purpose of this study was to investigate the significance of Rab25 status in patients with ccRCC. Rab25 expression was determined by western blot analysis in 30 fresh ccRCC samples. Immunohistochemistry was performed on the ccRCC samples and paired adjacent noncancerous tissues from 107 patients with ccRCC who had undergone surgery. The prognostic role and correlations with other clinicopathological factors were evaluated. Rab25 expression was upregulated in ccRCC tissues compared with that in paired adjacent noncancerous tissues. A high expression of Rab25 protein was significantly correlated with the primary tumor stage; lymph node metastasis; distant metastasis; tumor, node and metastasis stage and histological grade. A Kaplan-Meier survival analysis by log-rank test demonstrated that elevated Rab25 expression predicted lower overall survival time in patients with ccRCC. Notably, multivariate analyses revealed that expression of Rab25 was an independent prognostic factor in ccRCC (hazard ratio, 3.43; 95% confidence interval, 1.13–10.38; P=0.023). In conclusion, Rab25 is a potential prognostic biomarker in ccRCC.
PMCID: PMC4151676  PMID: 25187796
clear cell renal cell carcinoma; Rab25; prognosis; marker
6.  Biapenem versus meropenem in the treatment of bacterial infections: a multicenter, randomized, controlled clinical trial 
Background & objectives:
Biapenem is a newly developed carbapenem to treat moderate and severe bacterial infections. This multicenter, randomized, parallel-controlled clinical trial was conducted to compare the clinical efficacy, bacterial eradication rates and safety of biapenem and meropenem in the treatment of bacterial lower respiratory tract infections and urinary tract infections (UTIs) at nine centres in China.
Patients diagnosed with bacterial lower respiratory tract infections or UTIs were randomly assigned to receive either biapenem (300 mg every 12 h) or meropenem (500 mg every 8 h) by intravenous infusion for 7 to 14 days according to their disease severity. The overall clinical efficacy, bacterial eradication rates and drug-related adverse reactions of biapenem and meropenem were analyzed.
A total of 272 enrolled cases were included in the intent-to-treat (ITT) analysis and safety analysis. There were no differences in demographics and baseline medical characteristics between biapenem group and meropenem group. The overall clinical efficacies of biapenem and meropenem were not significantly different, 94.70 per cent (125/132) vs. 93.94 per cent (124/132). The overall bacterial eradication rates of biapenem and meropenem showed no significant difference, 96.39 per cent (80/83) vs. 93.75 per cent (75/80). Drug-related adverse reactions were comparable in biapenem and meropenem groups with the incidence of 11.76 per cent (16/136) and 15.44 per cent (21/136), respectively. The most common symptoms of biapenem-related adverse reactions were rash (2.2%) and gastrointestinal distress (1.5%).
Interpretation & conclusions:
Biapenem was non-inferior to meropenem and was well-tolerated in the treatment of moderate and severe lower respiratory tract infections and UTIs.
PMCID: PMC3978993  PMID: 24521647
Bacterial infection; biapenem; lower respiratory infection; meropenem; treatment; UTI
7.  Sirolimus modulates HIVAN phenotype through inhibition of epithelial mesenchymal transition 
HIV-associated nephropathy (HIVAN) is characterized by proliferative phenotype in the form of collapsing glomerulopathy and microcystic dilatation of tubules. Recently, epithelial mesenchymal transition (EMT) of renal cells has been demonstrated to contribute to the pathogenesis of proliferative HIVAN phenotype. We hypothesized that sirolimus would modulate HIVAN phenotype by attenuating renal cell EMT. In the present study, we evaluated the effect of sirolimus on the development of renal cell EMT as well as on display of HIVAN phenotype in a mouse model of HIVAN (Tg26). Tg26 mice receiving normal saline (TgNS) showed enhanced proliferation of both glomerular and tubular cells when compared to control mice-receiving normal saline (CNS); on the other hand, Tg26 mice receiving sirolimus (TgS) showed attenuated renal cell proliferation when compared with TgNS. TgNS also showed increased number of α-SMA-, vimentin-, and FSP1- positive cells (glomerular as well as tubular) when compared with CNS; however, TgS showed reduced number of SMA, vimentin, and FSP1 +ve renal cells when compared to TgNS. Interestingly, sirolimus preserved renal epithelial cell expression of E-cadherin in TgS. Since sirolimus attenuated renal cell ZEB expression (a repressor of E-cadherin transcription), it appears that sirolimus may be attenuating renal cell EMT by preserving epithelial cell E-cadherin expression.
PMCID: PMC3372700  PMID: 22579465
8.  Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex 
BMB Reports  2013;46(4):230-235.
Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism. [BMB Reports 2013; 46(4): 230-235]
PMCID: PMC4133885  PMID: 23615266
Cell adhesion; Nephrin phosphorylation; PINCH-1-ILK-α-parvin complex; Podocyte
9.  High glucose induces autophagy in podocytes 
Experimental cell research  2013;319(6):779-789.
Autophagy is a cellular pathway involved in protein and organelle degradation. It is relevant to many types of cellular homeostasis and human diseases. High level of glucose is known to inflict podocyte injury, but little is reported about the relationship between high concentrations of glucose and autophagy in these cells. The present study demonstrates that high glucose promotes autophagy in podocytes. Rapamycin further enhances this effect, but 3-methyadenine inhibits it. The proautophagic effect of high glucose manifested in the form of enhanced podocyte expression of LC3-2 and beclin-1; interestingly, antioxidants such as NAC were found to inhibit high glucose-induced autophagy. High glucose induced the generation of ROS by podocytes in a time-dependent manner. High glucose also enhanced podocyte expression of MnSOD and catalase. These findings indicate that high glucose-induced autophagy is mediated through podocyte ROS generation.
PMCID: PMC3628680  PMID: 23384600
Autophagy; High glucose; Podocytes; Oxidative stress
10.  HIV-associated Nephropathy : Role of AT2R 
Cellular Signalling  2011;24(3):734-741.
AT1R has been reported to play an important role in the progression of HIV-associated nephropathy (HIVAN); however, the effect of AT2R has not been studied. Age and sex matched control (FVB/N) and Tg26 mice aged 4, 8, and 16 weeks were studied for renal tissue expression of AT1R and AT2R (Protocol A). Renal tissue mRNA expression of AT2R was lower in Tg26 mice when compared with control mice. In protocol B, Tg26 mice were treated with either saline, telmisartan (TEL, AT1 blocker), PD123319 (PD, AT2R blocker), or TEL + PD for two weeks. TEL-receiving Tg26 (TRTg) displayed less advanced glomerular and tubular lesions when compared with saline-receiving Tg26 (SRTg). TRTgs displayed enhanced renal tissue AT2R expression when compared to SRTgs. Diminution of renal tissue AT2R expression was associated with advanced renal lesions in SRTgs; whereas, upregulation of AT2R expression in TRTgs was associated with attenuated renal lesions. PD-receiving Tg 26 mice (PDRTg) did not show any alteration in the course of HIVAN; whereas, PD + TEL-receiving Tg26 (PD-TRTg) showed worsening of renal lesions when compared to TRTgs. Interestingly, plasma as well as renal tissues of Tg26 mice displayed several fold higher concentration of Ang III, a ligand of AT2R.
PMCID: PMC3258382  PMID: 22108089
11.  Lipopolysaccharide-induced expression of surfactant proteins A1 and A2 in human renal tubular epithelial cells 
Surfactant protein A (SP-A), encoded by two functional genes, SP-A1 and SP-A2, is essential for the inflammatory process and host defence in the lungs. Recent studies have demonstrated the extrapulmonary expression of SP-A. Similar to the lungs, the kidneys are organs exposed to external pathogens. The present study evaluated the expression and location of SP-A in the kidneys. The effect of lipopolysaccharide (LPS) on the expression of SP-A subtypes was also studied in renal tubular epithelial (HK-2) cells.
Immunohistochemical staining was performed using polyclonal antibody against SP-A. RT-PCR was also performed using mRNA from normal human renal tissues and HK-2 cells. The expressions of the SP-A1 and SP-A2 genes were determined by PCR-based RFLP analysis, gene-specific amplification, and direct sequencing of RT-PCR products. Western blot was conducted to analyse the SP-A protein. HK-2 cells were treated with LPS at various concentrations (0, 0.1, 1, 2, 5, and 10 μg/mL) for 8 h and at 5 μg/mL at various time points (0, 2, 4, 8, 16, and 24 h). The LPS-induced expressions of SP-A1 and SP-A2 mRNA and protein were analysed by RT-PCR and Western blot.
SP-A was localised in the renal tubular epithelial cells in the proximal and distal convoluted tubules. SP-A1 and SP-A2 mRNA and protein were expressed in HK-2 cells and human renal tissues, which were significantly increased in time- and dose-dependent manners after LPS treatment (P < 0.05).
Human renal tubular epithelial cells can express both SP-A1 and SP-A2 genes, which may play important roles in the inflammatory modulation of the kidney.
PMCID: PMC3691655  PMID: 23311887
Surfactant protein A1; Surfactant protein A2; Human renal tubular epithelial cells; Lipopolysaccharide; Inflammatory modulation
12.  Angiotensin II induces nephrin dephosphorylation and podocyte injury: Role of caveolin-1 
Cellular signalling  2011;24(2):443-450.
Nephrin, an important structural and signal molecule of podocyte slit-diaphragm (SD), has been suggested to contribute to the angiotensin II (Ang II)-induced podocyte injury. Caveolin-1 has been demonstrated to play a crucial role in signaling transduction. In the present study, we evaluated the role of caveolin-1 in Ang II-induced nephrin phosphorylation in podocytes. Wistar rats-receiving either Ang II (400 ng/kg/min) or normal saline (via subcutaneous osmotic mini-pumps, control) were administered either vehicle or telmisartan (3 mg/kg/min) for 14 or 28 days. Blood pressure, 24-hour urinary albumin and serum biochemical profile were measured at the end of the experimental period. Renal histomorphology was evaluated through light and electron microscopy. In vitro, cultured murine podocytes were exposed to Ang II (10−6 M) pretreated with or without losartan (10−5 M) for variable time periods. Nephrin and caveolin-1 expression and their phosphorylation were analyzed by Western-blotting and immunofluorescence. Caveolar membrane fractions were isolated by sucrose density gradient centrifugation, and then the distribution and interactions between Ang II type 1 receptor (AT1), nephrin, C-terminal Src kinase (Csk) and caveolin-1 were evaluated using Western-blotting and co-immunoprecipitation. Podocyte apoptosis was evaluated by cell nucleus staining with Hoechst-33342.
Ang II-receiving rats displayed diminished phosphorylation of nephrin but enhanced glomerular/podocyte injury and proteinuria when compared to control rats. Under control conditions, podocyte displayed expression of caveolin-1 in abundance but only a low level of phospho moiety. Nonetheless, Ang II stimulated caveolin-1 phosphorylation without any change in total protein expression. Nephrin and caveolin-1 were co-localized in caveolae fractions. AT1 receptors and Csk were moved to caveolae fractions and had an interaction with caveolin-1 after the stimulation with Ang II. Transfection of caveolin-1 plasmid (pEGFPC3-cav-1) significantly increased Ang II-induced nephrin dephosphorylation and podocyte apoptosis. Furthermore, knockdown of caveolin-1 expression (using siRNA) inhibited nephrin dephosphorylation and prevented Ang II-induced podocyte apoptosis. These findings indicate that Ang II induces nephrin dephosphorylation and podocyte injury through a caveolin-1-dependent mechanism.
PMCID: PMC3237911  PMID: 21982880
Caveolin-1; Podocyte; Angiotensin II; Nephrin
13.  Disparate effects of eplerenone, amlodipine and telmisartan on podocyte injury in aldosterone-infused rats 
Background. Several studies in patients with primary aldosteronism (PA) have suggested that aldosterone (ALD) is directly contributing to albuminuria. However, there are limited data pertaining to the direct role of ALD in in vivo models in regard to the induction of renal injury and the involved mechanisms. In the present study, we established a high-dose ALD-infused rat model to evaluate urinary albumin excretion rate (UAER) and podocyte damage. Moreover, we studied the effect of eplerenone (EPL), telmisartan (TEL) and amlodipine (AML) on ALD-induced renal structural and functional changes.
Methods. Immunohistochemical and real-time PCR analyses, and TUNEL assays were performed to evaluate nephrin expression and podocyte injury.
Results. ALD-receiving rats (ARR) showed a progressive increase in BP, UAER and proteinuria when compared with control rats (CR). Conversely, BP was significantly reduced in ALD + EPL (A/ERR)-, ALD + AML (A/ARR)- and ALD + TEL (A/TRR)-treated rats. However, UAER and proteinuria were decreased only in A/ERR and A/TRR, but not in A/ARR. Only EPL administration provided protection against ALD-induced podocyte apoptosis. Renal tissue of ARR revealed enhanced expression of nephrin protein and mRNA. This effect of ALD was inhibited by EPL, but not by TEL or AML.
Conclusions. ALD induces direct glomerular injury independent of its haemodynamic effects; this effect of ALD is, at least in part, mediated through activation of the mineralocorticoid receptor.
PMCID: PMC3108348  PMID: 20729265
aldosterone; amlodipine; eplerenone; podocyte; telmisartan
14.  1,1′-(2,5-Dimethyl­thio­phene-3,4-di­yl)diethanone 
The title compound, C10H12O2S, crystallizes with four mol­ecules in the asymmetric unit. The main conformational difference between these mol­ecules is the orientation of the acetyl groups with respect to the ring. Whereas one acetyl group is only slightly twisted with respect to the thio­phene ring [C—C—C—O torsion angles = 165.7 (4), −164.6 (4), 164.3 (4) and −163.6 (4)°], the other acetyl group is markly twisted out of the ring plane [C—C—C—O torsion angles = −61.2 (6), 61.3 (7), −59.7 (7) and 59.9 (6)°]. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into infinite chains along the c axis.
PMCID: PMC3200822  PMID: 22064921
15.  Role of LOX-1 and ROS in oxidized low-density lipoprotein induced epithelial-mesenchymal transition of NRK52E 
To investigate the effect of oxidized low density lipoprotein receptor-1 (LOX-1) on tubular epithelial-mesenchymal transition (TEMT) induced by oxidized low-density lipoprotein (ox-LDL) and its mechanism.
NRK-52E cells were incubated with ox-LDL (0, 25, 50, and 100 μg/ml) for 24 hours or pre-treated with the chemical inhibitor of the LOX-1 receptor polyinosinic acid (poly I) and carrageenan or the antioxidant N-acetyl-L-cysteine (NAC), the cells were then exposed to 50 μg/ml of ox-LDL.The expression of LOX-I, E-cadherin, α-smooth muscle actin (α-SMA) and reactive oxygen species (ROS) were analyzed by real-time PCR, western blotting analysis, immunofluorescence and confocal laser scanning microscopy.
Ox-LDL increased the expression of LOX-1 mRNA and protein in a dose-dependent manner from 0 to 100 μg/ml (P < 0.05). Following the increase in the LOX-1 protein level, the lipid intake, ROS generation and α-SMA expression increased; however, the E-cadherin level decreased. The pre-treatment with poly I or carrageenan or NAC significantly inhibited the LOX-1 expression, α-SMA expression, the lipid intake and ROS generation and reversed decrease of E-cadherin expression induced by ox-LDL. Meanwhile, the ROS generation were associated with a increase in the LOX-1 expression. The α-SMA expression was positively correlated with the ROS generation and LOX-1 expression, and the E-cadherin expression was negatively correlated with the ROS generation and LOX-1 expression.
LOX-1 and ROS may play a important role in epithelial-mesenchymal transition of NRK52E induced by OX-LDL.
PMCID: PMC2978210  PMID: 20958994
16.  Aldosterone Induces Apoptosis in Rat Podocytes: Role of PI3-K/Akt and p38MAPK Signaling Pathways 
Nephron. Experimental nephrology  2009;113(1):e26-e34.
Podocytes play a critical role in the pathogenesis of glomerulosclerosis. Increasing evidence suggests that aldosterone (ALD) is involved in the initiation and progression of glomerular damage. It is, however, unknown whether there is a direct injurious effect of ALD on podocytes. Therefore, in the present study, we evaluated the effect of ALD on podocyte apoptosis and studied the role of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in this process.
Podocytes were incubated in media containing either buffer or increasing concentrations of ALD (10–9∼10–5M) for variable time periods. The cells were also treated with either wortmannin (inhibitor of PI3-K, 100 nM), SB202190 (SB20, inhibitor of p38MAPK, 10 μM) or buffer. All treatments were performed with or without ALD (10–7M) for 24 h. At the end of the incubation period, apoptosis was evaluated by cell nucleus staining and flow cytometric analyses. Activation of PI3-K/Akt and p38MAPK phosphorylation of cultured rat podocytes was evaluated by performing Akt kinase assay and Western blot, respectively.
Apoptosis of cultured rat podocytes was induced by ALD in a dose- and time-dependent manner. ALD inhibited the activity of PI3-K/Akt and increased the activation of p38MAPK. PI3-K/Akt activity was further inhibited by the addition of wortmannin to the cells in the presence of ALD. This was accompanied by a significant increase in apoptosis. ALD-induced p38MAPK phosphorylation and apoptosis were inhibited when the cells were pretreated with SB20. Furthermore, treatment with spironolactone not only attenuated the proapoptotic effect of ALD, but also significantly reversed its effects on PI3-K/Akt and p38MAPK signaling pathways.
ALD induces apoptosis in rat podocytes through inhibition of PI3-K/Akt and stimulation of p38 MAPK signaling pathways. Spironolactone attenuates ALD-induced podocyte apoptosis, thereby positioning this compound as a potential promising target of intervention in human renal damage.
PMCID: PMC2790761  PMID: 19590239
Aldosterone; Podocyte; Phosphatidylinositol 3-kinase/Akt; p38 mitogen-activated protein kinase; Apoptosis
17.  Angiotensin II Infusion Induces Nephrin Expression Changes and Podocyte Apoptosis 
American journal of nephrology  2008;28(3):500-507.
In in vitro studies, angiotensin (Ang) II has been demonstrated to promote podocyte apoptosis. The present study evaluates the effects of Ang II infusion in rats on podocyte nephrin expression and apoptosis and the molecular mechanisms involved in Ang II-induced proteinuria and mesangial expansion.
Sprague-Dawley rats were randomly assigned to receive either normal saline or Ang II (400 ng·kg−1·min−1) by means of a mini-osmotic pump for variable time periods. Systolic blood pressure and urinary protein and albumin excretion rate measurements were carried out on days 7, 14, 21, and 28. The animals were sacrificed on days 14 and 28 and evaluated for serum creatinine, renal pathological changes, podocyte apoptosis, renal nephrin mRNA, and protein expression.
The Ang II-infused rats developed hypertension and proteinuria. On day 14, the Ang II-infused rats showed narrowing of the slit diaphragm, an increase in podocyte nephrin mRNA and protein expression, and alterations in its distribution along the foot processes. On day 28, the Ang II-infused rats demonstrated the presence of apoptotic podocytes and decreased nephrin mRNA and protein expression. There was a negative correlation between nephrin expression and the numbers of apoptotic podocytes (r = −0.63, p < 0.05).
These results suggest that changes in nephrin expression may play a role in the pathogenesis of Ang II-induced podocyte apoptosis.
PMCID: PMC2630486  PMID: 18204248
Angiotensin II; Proteinuria; Nephrin expression; Podocyte; Apoptosis
18.  Angiotensin II Infusion Induces Nephrin Expression Changes and Podocyte Apoptosis 
American Journal of Nephrology  2008;28(3):500-507.
In in vitro studies, angiotensin (Ang) II has been demonstrated to promote podocyte apoptosis. The present study evaluates the effects of Ang II infusion in rats on podocyte nephrin expression and apoptosis and the molecular mechanisms involved in Ang II-induced proteinuria and mesangial expansion.
Sprague-Dawley rats were randomly assigned to receive either normal saline or Ang II (400 ng·kg–1·min–1) by means of a mini-osmotic pump for variable time periods. Systolic blood pressure and urinary protein and albumin excretion rate measurements were carried out on days 7, 14, 21, and 28. The animals were sacrificed on days 14 and 28 and evaluated for serum creatinine, renal pathological changes, podocyte apoptosis, renal nephrin mRNA, and protein expression.
The Ang II-infused rats developed hypertension and proteinuria. On day 14, the Ang II-infused rats showed narrowing of the slit diaphragm, an increase in podocyte nephrin mRNA and protein expression, and alterations in its distribution along the foot processes. On day 28, the Ang II-infused rats demonstrated the presence of apoptotic podocytes and decreased nephrin mRNA and protein expression. There was a negative correlation between nephrin expression and the numbers of apoptotic podocytes (r = −0.63, p < 0.05).
These results suggest that changes in nephrin expression may play a role in the pathogenesis of Ang II-induced podocyte apoptosis.
PMCID: PMC2630486  PMID: 18204248
Angiotensin II; Proteinuria; Nephrin expression; Podocyte; Apoptosis
19.  Tubulointerstitial Macrophage Accumulation is Regulated by Sequentially Expressed Osteopontin and Macrophage Colony-Stimulating Factor: Implication for the Role of Atorvastatin 
Mediators of Inflammation  2006;2006(2):12919.
Infiltration and local proliferation are known factors that contribute to tubulointerstitial macrophage accumulation. This study explored the time course of these two contributors' roles as tubulointerstitial inflammation and fibrosis progressing, and evaluated the mechanisms of the protective effect of atorvastatin. Unilateral ureteral obstructive (UUO) rats were treated with atorvastatin (10 mg/Kg) or vehicle. Expression of osteopontin (OPN) and macrophage colony-stimulating factor (M-CSF) was evaluated by RT-PCR and immunohistochemistry. Immunohistochemistry staining of ED1 was used to assess macrophage accumulation in interstitium. Histological evaluation was performed to semiquantify tubulointerstitial fibrosis. The results showed that on day 3 after UUO operation, OPN expression significantly increased and positively correlated with the number of the interstitial ED1+ cells, while on day 10, M-CSF expression upregulated and correlated with interstitial ED1+ cells. In atorvastatin treatment group, the increments of these two factors were attenuated significantly at the two time points, respectively. ED1+ cell accumulation and fibrosis also ameliorated in the treatment group. For all the samples of UUO and treatment group on day 10, ED1+ cells also correlated with interstitial fibrosis scores. The results suggest that OPN may induce the early macrophage/monocyte infiltration and M-CSF may play an important role in regulating macrophage accumulation in later stage of UUO nephropathy. Statin treatment decreases interstitial inflammation and fibrosis, and this renoprotective effect may be mediated by downregulating the expression of OPN and M-CSF.
PMCID: PMC1592581  PMID: 16883060
20.  Angiotensin II-induced mesangial cell apoptosis: role of oxidative stress. 
Molecular Medicine  2002;8(12):830-840.
BACKGROUND: Angiotensin II (ANG II) has been shown to play a role in the induction of glomerular injury. In the present study, we evaluated the effects of ANG II on mesangial cell apoptosis and the involved molecular mechanism. MATERIALS AND METHODS: The effect of ANG II on apoptosis of mouse mesangial cells (MC) was evaluated by morphologic, DNA fragmentation and TUNEL assays. To evaluate the role of oxidative stress and involved mechanisms, we studied the effect of antioxidants, anti-TGF-beta antibody, inhibitors of nitric oxide synthase and modulators of cytosolic calcium/heme oxygenase (HO) activity. In addition, we studied the effect of ANG II on the generation of reactive oxygen species (ROS) by MCs. RESULTS: ANG II promoted apoptosis of MCs in a dose dependent manner. This effect of ANG II was not only associated with ROS production, but also inhibited by antioxidants. Both Anti-TGF-beta antibody and propranolol inhibited ANG II-induced ROS generation and apoptosis. BAPTA inhibited both ANG II- and TGF-beta-induced apoptosis. On the other hand, thapsigargin stimulated MC apoptosis under basal as well as ANG II/TGF-beta stimulated states. ANG II receptor types 1 and 2 antagonists attenuated the proapoptotic effect of ANG II. Hemin inhibited but zinc protoporphyrin enhanced the proapoptotic effect of ANG II. Propranolol increased HO activity; whereas pre-treatment with propranolol prevented ANG II-induced apoptosis. CONCLUSIONS: ANG II promotes MC apoptosis. This effect of ANG II is mediated through downstream signaling involving TGF-beta, phospholipase D, and Ca(2+), contributing to the activation of NADPH oxidase and generation of ROS. HO activity plays a modulatory role in ANG II- induced MC apoptosis.
PMCID: PMC2039960  PMID: 12606818

Results 1-20 (20)