Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Epstein-Barr Virus in Gastric Carcinoma 
Cancers  2014;6(4):2259-2274.
The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma, all tumor cells harbor the clonal EBV genome. Gastric carcinoma associated with EBV has distinct clinicopathological features, occurs predominately in men and in younger-aged individuals, and presents a generally diffuse histological type. Most cases of EBV-associated gastric carcinoma exhibit a histology rich in lymphocyte infiltration. The immunological reactiveness in the host may represent a relatively preferable prognosis in EBV-positive cases. This fact highlights the important role of EBV in the development of EBV-associated gastric carcinoma. We have clearly proved direct infection of human gastric epithelialcells by EBV. The infection was achieved by using a recombinant EBV. Promotion of growth by EBV infection was observed in the cells. Considerable data suggest that EBV may directly contribute to the development of EBV-associated GC. This tumor-promoting effect seems to involve multiple mechanisms, because EBV affects several host proteins and pathways that normally promote apoptosis and regulate cell proliferation.
PMCID: PMC4276965  PMID: 25386788
Epstein-Barr virus; gastric carcinoma; DNA methylation
2.  Exosomes Derived from Epstein-Barr Virus-Infected Cells Are Internalized via Caveola-Dependent Endocytosis and Promote Phenotypic Modulation in Target Cells 
Journal of Virology  2013;87(18):10334-10347.
Epstein-Barr virus (EBV), a human gammaherpesvirus, establishes a lifelong latent infection in B lymphocytes and epithelial cells following primary infection. Several lines of evidence suggest that exosomes derived from EBV-infected cells are internalized and transfer viral factors, including EBV-encoded latent membrane protein and microRNAs, to the recipient cells. However, the detailed mechanism by which exosomes are internalized and their physiological impact on the recipient cells are still poorly understood. In this study, we visualized the internalization of fluorescently labeled exosomes derived from EBV-uninfected and EBV-infected B cells of type I and type III latency into EBV-negative epithelial cells. In this way, we demonstrated that exosomes derived from all three cell types were internalized into the target cells in a similar fashion. Internalization of exosomes was significantly suppressed by treatment with an inhibitor of dynamin and also by the knockdown of caveolin-1. Labeled exosomes were colocalized with caveolae and subsequently trafficked through endocytic pathways. Moreover, we observed that exosomes derived from type III latency cells upregulated proliferation and expression of intercellular adhesion molecule 1 (ICAM-1) in the recipient cells more significantly than did those derived from EBV-negative and type I latency cells. We also identified the EBV latent membrane protein 1 (LMP1) gene as responsible for induction of ICAM-1 expression. Taken together, our data indicate that exosomes released from EBV-infected B cells are internalized via caveola-dependent endocytosis, which, in turn, contributes to phenotypic changes in the recipient cells through transferring one or more viral factors.
PMCID: PMC3753980  PMID: 23864627
3.  Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1 
Nature immunology  2012;13(9):832-842.
The mechanisms by which tumor microenvironments modulate nucleic acid–mediated innate immunity remain unknown. Here we identify the receptor TIM-3 as key in circumventing the stimulatory effects of nucleic acids in tumor immunity. Tumor-associated dendritic cells (DCs) in mouse tumors and patients with cancer had high expression of TIM-3. DC-derived TIM-3 suppressed innate immune responses through the recognition of nucleic acids by Toll-like receptors and cytosolic sensors via a galectin-9-independent mechanism. In contrast, TIM-3 interacted with the alarmin HMGB1 to interfere with the recruitment of nucleic acids into DC endosomes and attenuated the therapeutic efficacy of DNA vaccination and chemotherapy by diminishing the immunogenicity of nucleic acids released from dying tumor cells. Our findings define a mechanism whereby tumor microenvironments suppress antitumor immunity mediated by nucleic acids.
PMCID: PMC3622453  PMID: 22842346
4.  Epstein-Barr Virus (EBV)-associated Gastric Carcinoma 
Viruses  2012;4(12):3420-3439.
The ubiquitous Epstein-Barr virus (EBV) is associated with several human tumors, which include lymphoid and epithelial malignancies. It is known that EBV persistently infects the memory B cell pool of healthy individuals by activating growth and survival signaling pathways that can contribute to B cell lymphomagenesis. Although the monoclonal proliferation of EBV-infected cells can be observed in epithelial tumors, such as nasopharyngeal carcinoma and EBV-associated gastric carcinoma, the precise role of EBV in the carcinogenic progress is not fully understood. This review features characteristics and current understanding of EBV-associated gastric carcinoma. EBV-associated gastric carcinoma comprises almost 10% of all gastric carcinoma cases and expresses restricted EBV latent genes (Latency I). Firstly, definition, epidemiology, and clinical features are discussed. Then, the route of infection and carcinogenic role of viral genes are presented. Of particular interest, the association with frequent genomic CpG methylation and role of miRNA for carcinogenesis are topically discussed. Finally, the possibility of therapies targeting EBV-associated gastric carcinoma is proposed.
PMCID: PMC3528272  PMID: 23342366
EBV; Carcinogenesis; EBV-associated gastric carcinoma; Epithelial; CD21; Methylation; miRNA
5.  Regulation of cancer stem cell activities by tumor-associated macrophages 
Recent studies revealed that tumor-associated macrophages play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. However, the role of cancer stem cells in the tumorigenic activities of tumor-associated macrophages during the course of transformation and treatment remains largely unknown. Recent studies have clarified the functional aspects of tumor-associated macrophages in the regulation of the tumorigenic activities and anticancer drug responsiveness of cancer stem cells through complex networks formed by distinct sets of cytokines, chemokines and growth factors. In this article we discuss recent advances and future perspectives regarding the molecular interplay between cancer stem cells and tumor-associated macrophages and provide future perspective about the therapeutic implication against treatment-resistant variants of cancer.
PMCID: PMC3433107  PMID: 22957305
Cancer stem cells; tumor associated macrophages; tumor microenvironments; MFG-E8; IL-6; TIM-3; M-CSF
6.  MFG-E8 Regulates the Immunogenic Potential of Dendritic Cells Primed with Necrotic Cell-Mediated Inflammatory Signals 
PLoS ONE  2012;7(6):e39607.
Dendritic cells (DC) manipulate tissue homeostasis by recognizing dying cells and controlling immune functions. However, the precise mechanisms by which DC recognize different types of dying cells and devise distinct immunologic consequences remain largely obscure. Herein, we demonstrate that Milk-fat globule-EGF VIII (MFG-E8) is a critical mediator controlling DC immunogenicity in inflammatory microenvironments. MFG-E8 restrains DC-mediated uptake and recognition of necrotic cells. The MFG-E8-mediated suppression of necrotic cell uptake by DC resulted in the decreased proinflammatory cytokines production and activated signal components such as STAT3 and A20, which are critical to maintain tolerogenic properties of DC. Furthermore, the DC-derived MFG-E8 negatively regulates the cross-priming and effector functions of antigen-specific T cells upon recognition of necrotic cells. MFG-E8 deficiency enhances an ability of necrotic cell-primed DC to stimulate antitumor immune responses against established tumors. Our findings define what we believe to a novel mechanism whereby MFG-E8 regulates the immunogenicity of DC by modulating the modes of recognition of dying cells. Manipulating MFG-E8 levels in DC may serve as a useful strategy for controlling inflammatory microenvironments caused by various pathological conditions including cancer and autoimmunity.
PMCID: PMC3382463  PMID: 22761839
7.  Unexpected Instability of Family of Repeats (FR), the Critical cis-Acting Sequence Required for EBV Latent Infection, in EBV-BAC Systems 
PLoS ONE  2011;6(11):e27758.
A group of repetitive sequences, known as the Family of Repeats (FR), is a critical cis-acting sequence required for EBV latent infection. The FR sequences are heterogeneous among EBV strains, and they are sometimes subject to partial deletion when subcloned in E. coli-based cloning vectors. However, the FR stability in EBV-BAC (bacterial artificial chromosome) system has never been investigated. We found that the full length FR of the Akata strain EBV was not stably maintained in a BAC vector. By contrast, newly obtained BAC clones of the B95-8 strain of EBV stably maintained the full length FR during recombinant virus production and B-cell transformation. Investigation of primary DNA sequences of Akata–derived EBV-BAC clones indicates that the FR instability is most likely due to a putative secondary structure of the FR region. We conclude that the FR instability in EBV-BAC clones can be a pitfall in E. coli-mediated EBV genetics.
PMCID: PMC3218044  PMID: 22114684
8.  Epstein-Barr Virus-Encoded Poly(A)− RNA Confers Resistance to Apoptosis Mediated through Fas by Blocking the PKR Pathway in Human Epithelial Intestine 407 Cells 
Journal of Virology  2005;79(19):12280-12285.
Our recent findings demonstrated that the Epstein-Barr virus-encoding small nonpolyadenylated RNA (EBER) confers resistance to various apoptotic stimuli and contributes to the maintenance of malignant phenotypes in Burkitt's lymphoma. In this study we investigated the role of EBER in the human epithelial Intestine 407 cell line, which is known to be susceptible to Fas (Apo1/CD95)-mediated apoptosis. Fas, a member of the tumor necrosis factor receptor family, transduces extracellular signals to the apoptotic cellular machinery, leading to cell death. Transfection of the EBER gene into Intestine 407 cells significantly protected the cells from Fas-mediated apoptosis, whereas EBER-negative cell lines underwent apoptosis after Fas treatment. EBER bound double-stranded RNA-dependent protein kinase R (PKR), an interferon-inducible serine/threonine kinase, and abrogated its kinase activity. Moreover, expression of the catalytically inactive dominant-negative PKR provided resistance to Fas-induced apoptosis. Expression of EBER or dominant-negative PKR also inhibited the cleavage of poly(ADP-ribose) polymerase, a mediator of the cellular response to DNA damage, downstream of the Fas-mediated apoptotic pathway. These results in combination indicate that EBER confers resistance to Fas-mediated apoptosis by blocking PKR activity in Intestine 407 cells, consistent with the idea that EBER contributes to the maintenance of epithelioid malignancies.
PMCID: PMC1211525  PMID: 16160154
9.  Ammonia as an Accelerator of Tumor Necrosis Factor Alpha-Induced Apoptosis of Gastric Epithelial Cells in Helicobacter pylori Infection 
Infection and Immunity  2001;69(2):816-821.
The mechanism by which Helicobacter pylori induces apoptosis remains unclear. In a previous study using biopsy samples, we found a significant correlation between the urease activity of an H. pylori strain and the apoptosis level induced by this strain. Therefore, in this study, we investigated whether urease and/or the ammonia generated by urease can induce apoptosis. Human gastric epithelial cell lines were cocultured with H. pylori, and the levels of apoptosis and ammonia production were measured. The medium was supplemented (or not supplemented) with urea and cytokines. While a large amount of ammonia (>30 mM) accumulated in the coculture containing urease-positive H. pylori and urea, no significant degree of apoptosis occurred. In the presence of tumor necrosis factor alpha (TNF-α), however, a marked acceleration of apoptosis was found in this coculture. Such enhancement of apoptosis was also induced by the addition of 4 to 8 mM ammonia to the cell culture without either H. pylori or urea but containing TNF-α. These results suggested that ammonia accelerates cytokine-induced apoptosis in gastric epithelial cells, while ammonia or urease molecules alone are unable to induce a significant degree of apoptosis.
PMCID: PMC97957  PMID: 11159973
10.  Urease Plays an Important Role in the Chemotactic Motility of Helicobacter pylori in a Viscous Environment 
Infection and Immunity  1998;66(10):4832-4837.
Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the mutant strain did not show swarming in motility agar regardless of having flagella. Incubation of the wild-type strain with flurofamide resulted in partial inhibition of the chemotactic activities in the viscous solution. In addition, incubation with acetohydroxamic acid, a low-molecular-weight, diffusible urease inhibitor, resulted in complete loss of chemotactic activity in the viscous solution. The inhibition of the chemotactic activity by urease inhibitors paralleled the inhibition of urease. The chemotactic activity of H. pylori was also inhibited by the proton carrier carbonyl cyanide m-chlorophenylhydrazone, showing that H. pylori utilizes proton motive force for motility. These results indicate that cytoplasmic urease plays an important role in the chemotactic motility of H. pylori under a condition that mimics the ecological niche of the bacterium, the gastric mucous layer.
PMCID: PMC108597  PMID: 9746586

Results 1-10 (10)