PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A multiplex serum protein assay for determining the probability of colorectal cancer 
Our purpose is to develop a serum assay to determine an individual’s probability of having colorectal cancer (CRC). We have discovered a protein panel yielding encouraging, clinically significant results. We evaluated 431 serum samples from donors screened for CRC by colonoscopy. We compared the concentration of seven proteins in individuals with CRC versus individuals found to be CRC free. The assay monitored a single peptide from each of seven proteins. Comparing CRC to normal samples in univariate two-sample t-tests, 6 of the 7 proteins yielded a p-value less than 0.01. Logistic regression was used to construct a model for determination of CRC probability. The model was fit on a randomly chosen training set of 321 samples. Using 6 of the 7 proteins (ORM1, GSN, C9, HABP2, SAA2, and C3) and a cut point of 0.4, an independent test set of 110 samples yielded a sensitivity of 93.75%, a specificity of 82.89% and a prevalence-adjusted negative predictive value (NPV) of 99.9775% for the assay. The results demonstrate that the assay has promise as a sensitive, non-invasive diagnostic test to provide individuals with an understanding of their own probability of having CRC.
PMCID: PMC3433100  PMID: 22957311
Colon cancer; proteomics; cancer; colon; mass spec; MRM; colorectal; CRC
2.  Gene for Heat-Inducible Lysyl-tRNA Synthetase (lysU) Maps near cadA in Escherichia coli 
Journal of Bacteriology  1983;153(2):1066-1068.
A hybrid ColE1 plasmid from the Clarke-Carbon colony bank with a 7-kilobase insertion was found to encode the inducible lysyl-tRNA synthetase along with the catabolic enzyme lysine decarboxylase. The gene for the inducible synthetase, lysU, must lie within 0.3 min of the lysine decarboxylase gene, cadA, at 92 min on the Escherichia coli genetic map.
Images
PMCID: PMC221734  PMID: 6337114

Results 1-2 (2)