PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer 
The non-receptor tyrosine kinases of the SRC family (SFK) play important roles in signal transduction induced by a large variety of extracellular stimuli, including growth factors and Integrins. When deregulated, SFKs show oncogenic activity, as originally reported for v-Src, the transforming product of the avian retrovirus RSV, and then, in many human cancers, particularly colorectal cancer (CRC). In CRC, SFK deregulation largely occurs in the absence of mutations of the corresponding genes, but the underlying molecular mechanisms involved are still unclear. In addition to a role in early tumor progression, SFK deregulation may also be important in advanced CRC, as suggested by the association between increased SFK activity and poor clinical outcome. However, SFK contribution to CRC metastasis formation is still poorly documented. Here, we will review recent findings that broaden our understanding of the mechanisms underlying SFK deregulation and signaling in advanced CRC. We will also discuss the implication of these observations for SFK-based therapy in metastatic CRC.
PMCID: PMC3410585  PMID: 22860228
Non-receptor tyrosine kinases; signal transduction; colorectal cancer (CRC); early tumor progression; advanced CRC
2.  Specific Oncogenic Activity of the Src-Family Tyrosine Kinase c-Yes in Colon Carcinoma Cells 
PLoS ONE  2011;6(2):e17237.
c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.
doi:10.1371/journal.pone.0017237
PMCID: PMC3044743  PMID: 21390316
3.  Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element 
Serum levels of HDL are inversely correlated with the risk of coronary heart disease. The anti-atherogenic effect of HDL is partially mediated by its major protein constituent apoA-I. In this study, we identify bile acids that are activators of the nuclear receptor farnesoid X receptor (FXR) as negative regulators of human apoA-I expression. Intrahepatocellular accumulation of bile acids, as seen in patients with progressive familial intrahepatic cholestasis and biliary atresia, was associated with diminished apoA-I serum levels. In human apoA-I transgenic mice, treatment with the FXR agonist taurocholic acid strongly decreased serum concentrations and liver mRNA levels of human apoA-I, which was associated with reduced serum HDL levels. Incubation of human primary hepatocytes and hepatoblastoma HepG2 cells with bile acids resulted in a dose-dependent downregulation of apoA-I expression. Promoter mutation analysis and gel-shift experiments in HepG2 cells demonstrated that bile acid–activated FXR decreases human apoA-I promoter activity by a negative FXR response element mapped to the C site. FXR bound this site and repressed transcription in a manner independent of retinoid X receptor. The nonsteroidal synthetic FXR agonist GW4064 likewise decreased apoA-I mRNA levels and promoter activity in HepG2 cells.
doi:10.1172/JCI14505
PMCID: PMC150929  PMID: 11927623

Results 1-3 (3)