Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Detection of Tumor PIK3CA Status in Metastatic Breast Cancer Using Peripheral Blood 
We sought to evaluate the feasibility of detecting PIK3CA mutations in circulating tumor DNA (ctDNA) from plasma of patients with metastatic breast cancer using a novel technique called BEAMing.
Experimental Design
In a retrospective analysis, 49 tumor and temporally matched plasma samples from patients with breast cancer were screened for PIK3CA mutations by BEAMing. We then prospectively screened the ctDNA of 60 patients with metastatic breast cancer for PIK3CA mutations by BEAMing and compared the findings with results obtained by screening corresponding archival tumor tissue DNA using both sequencing and BEAMing.
The overall frequency of PIK3CA mutations by BEAMing was similar in both patient cohorts (29% and 28.3%, respectively). In the retrospective cohort, the concordance of PIK3CA mutation status by BEAMing between formalin-fixed, paraffin-embedded (FFPE) samples and ctDNA from temporally matched plasma was 100% (34 of 34). In the prospective cohort, the concordance rate among 51 evaluable cases was 72.5% between BEAMing of ctDNA and sequencing of archival tumor tissue DNA. When the same archival tissue DNA was screened by both sequencing and BEAMing for PIK3CA mutations (n = 41 tissue samples), there was 100% concordance in the obtained results.
Analysis of plasma-derived ctDNA for the detection of PIK3CA mutations in patients with metastatic breast cancer is feasible. Our results suggest that PIK3CA mutational status can change upon disease recurrence, emphasizing the importance of reassessing PIK3CA status on contemporary (not archival) biospecimens. These results have implications for the development of predictive biomarkers of response to targeted therapies.
PMCID: PMC3533370  PMID: 22421194
2.  Androgen receptor as a targeted therapy for breast cancer 
Breast cancer occurs at a high frequency in women and, given this fact, a primary focus of breast cancer research has been the study of estrogen receptor α (ER) signaling. However, androgens are known to play a role in normal breast physiology and therefore androgen receptor (AR) signaling is becoming increasingly recognized as an important contributor towards breast carcinogenesis. Moreover, the high frequency of AR expression in breast cancer makes it an attractive therapeutic target, but the ability to exploit AR for therapy has been difficult. Here we review the historical use of androgen/anti-androgen therapies in breast cancer, the challenges of accurately modeling nuclear hormone receptor signaling in vitro, and the presence and prognostic significance of AR in breast cancer.
PMCID: PMC3410582  PMID: 22860233
Androgen receptor; MAP kinase; breast cancer; p21; androgens
3.  Detection of Cancer DNA in Plasma of Early Stage Breast Cancer Patients 
Detecting circulating plasma tumor DNA (ptDNA) in early stage cancer patients has the potential to change how oncologists recommend systemic therapies for solid tumors after surgery. Droplet digital polymerase chain reaction (ddPCR) is a novel sensitive and specific platform for mutation detection.
Experimental Design
In this prospective study, primary breast tumors and matched pre- and post-surgery blood samples were collected from early stage breast cancer patients (n=29). Tumors (n=30) were analyzed by Sanger sequencing for common PIK3CA mutations, and DNA from these tumors and matched plasma were then analyzed for PIK3CA mutations using ddPCR.
Sequencing of tumors identified seven PIK3CA exon 20 mutations (H1047R) and three exon 9 mutations (E545K). Analysis of tumors by ddPCR confirmed these mutations and identified five additional mutations. Pre-surgery plasma samples (n=29) were then analyzed for PIK3CA mutations using ddPCR. Of the fifteen PIK3CA mutations detected in tumors by ddPCR, fourteen of the corresponding mutations were detected in pre-surgical ptDNA, while no mutations were found in plasma from patients with PIK3CA wild type tumors (sensitivity 93.3%, specificity 100%). Ten patients with mutation positive ptDNA pre-surgery had ddPCR analysis of post-surgery plasma, with five patients having detectable ptDNA post-surgery.
This prospective study demonstrates accurate mutation detection in tumor tissues using ddPCR, and that ptDNA can be detected in blood before and after surgery in early stage breast cancer patients. Future studies can now address whether ptDNA detected after surgery identifies patients at risk for recurrence, which could guide chemotherapy decisions for individual patients.
PMCID: PMC4024333  PMID: 24504125
PIK3CA; breast cancer; droplet digital PCR; plasma tumor DNA
4.  A PIK3CA mutation detected in plasma from a patient with synchronous primary breast and lung cancers 
Human pathology  2013;45(4):880-883.
Digital PCR is a new technology that enables detection and quantification of cancer DNA molecules from peripheral blood. Using this technique, we identified mutant PIK3CA DNA in circulating plasma tumor DNA (ptDNA) from a patient with concurrent early stage breast cancer and non-small cell lung cancer. The patient underwent successful resection of both her breast and lung cancers, and using standard Sanger sequencing the breast cancer was shown to harbor the identical PIK3CA mutation identified in peripheral blood. This case report highlights potential applications and concerns that can arise with the use of ptDNA in clinical oncology practice.
PMCID: PMC3965626  PMID: 24444464
plasma tumor DNA; breast cancer; lung cancer; PIK3CA; digital PCR
5.  Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity 
Clinical biochemistry  2014;48(0):223-235.
To review the evidence for the use of various biomarkers in the detection of chemotherapy associated cardiac damage.
Design and methods was queried using the search words chemotherapy and cardiac biomarkers with the filters of past 10 years, humans, and English language. An emphasis was placed on obtaining primary research articles looking at the utility of biomarkers for the detection of chemotherapy-mediated cardiac injury.
Biomarkers may help identify patients undergoing treatment who are at high risk for cardiotoxicity and may assist in identification of a low risk cohort that does not necessitate continued intensive screening. cTn assays are the best studied biomarkers in this context and may represent a promising and potentially valuable modality for detecting cardiac toxicity in patients undergoing chemotherapy. Monitoring cTnI levels may provide information regarding the development of cardiac toxicity before left ventricular dysfunction becomes apparent on echocardiography or via clinical symptoms. A host of other biomarkers have been evaluated for their utility in the field of chemotherapy related cardiac toxicity with intermittent success; further trials are necessary to determine what role they may end up playing for prediction and prognostication in this setting.
Biomarkers represent an exciting potential complement or replacement for echocardiographic monitoring of chemotherapy related cardiac toxicity which may allow for earlier realization of the degree of cardiac damage occurring during treatment, creating the opportunity for more timely modulation of therapy.
PMCID: PMC4363159  PMID: 25445234
Cardiac toxicity; Chemotherapy; Anthracyclines; Troponin; Natriuretic peptides
6.  Age-Specific Gene Expression Signatures for Breast Tumors and Cross-Species Conserved Potential Cancer Progression Markers in Young Women 
PLoS ONE  2013;8(5):e63204.
Breast cancer in young women is more aggressive with a poorer prognosis and overall survival compared to older women diagnosed with the disease. Despite recent research, the underlying biology and molecular alterations that drive the aggressive nature of breast tumors associated with breast cancer in young women have yet to be elucidated. In this study, we performed transcriptomic profile and network analyses of breast tumors arising in Middle Eastern women to identify age-specific gene signatures. Moreover, we studied molecular alterations associated with cancer progression in young women using cross-species comparative genomics approach coupled with copy number alterations (CNA) associated with breast cancers from independent studies. We identified 63 genes specific to tumors in young women that showed alterations distinct from two age cohorts of older women. The network analyses revealed potential critical regulatory roles for Myc, PI3K/Akt, NF-κB, and IL-1 in disease characteristics of breast tumors arising in young women. Cross-species comparative genomics analysis of progression from pre-invasive ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) revealed 16 genes with concomitant genomic alterations, CCNB2, UBE2C, TOP2A, CEP55, TPX2, BIRC5, KIAA0101, SHCBP1, UBE2T, PTTG1, NUSAP1, DEPDC1, HELLS, CCNB1, KIF4A, and RRM2, that may be involved in tumorigenesis and in the processes of invasion and progression of disease. Array findings were validated using qRT-PCR, immunohistochemistry, and extensive in silico analyses of independently performed microarray datasets. To our knowledge, this study provides the first comprehensive genomic analysis of breast cancer in Middle Eastern women in age-specific cohorts and potential markers for cancer progression in young women. Our data demonstrate that cancer appearing in young women contain distinct biological characteristics and deregulated signaling pathways. Moreover, our integrative genomic and cross-species analysis may provide robust biomarkers for the detection of disease progression in young women, and lead to more effective treatment strategies.
PMCID: PMC3660335  PMID: 23704896
7.  The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer 
The combination of the mTOR inhibitor everolimus with the aromatase inhibitor exemestane was evaluated in the randomized Phase III BOLERO-2 trial. Research has indicated that aberrant signaling through the mTOR pathway is associated with resistance to endocrine therapies. The BOLERO-2 trial examined the effects on progression-free survival of the addition of everolimus to exemestane in a patient population of postmenopausal, hormone receptor-positive, advanced breast cancer. At the interim analysis, the median progression-free survival assessed by local investigators was 6.9 months for everolimus plus exemestane versus 2.8 months for placebo plus exemestane (hazard ratio: 0.43; p < 0.001), and by central assessment was 10.6 versus 4.1 months, respectively (hazard ratio: 0.36; p < 0.001). The everolimus plus exemestane arm showed greater number of grade 3 and 4 adverse events. This study suggests that the addition of everolimus to exemestane is a potential viable treatment option for this patient population.
PMCID: PMC3466807  PMID: 22764762
advanced breast cancer; BOLERO-2; endocrine resistance; everolimus; exemestane; hormone receptor-positive; mTOR inhibitor; postmenopausal
8.  PTEN Protein Loss by Immunostaining: Analytic Validation and Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients 
Clinical Cancer Research  2011;17(20):6563-6573.
Analytically validated assays to interrogate biomarker status in clinical samples are crucial for personalized medicine. PTEN is a tumor suppressor commonly inactivated in prostate cancer that has been mechanistically linked to disease aggressiveness. Though deletion of PTEN, as detected by cumbersome fluorescence in situ hybridization (FISH) spot counting assays, is associated with poor prognosis, few studies have validated immunohistochemical (IHC) assays to determine whether loss of PTEN protein is associated with unfavorable disease.
Experimental Design
PTEN IHC was validated by employing formalin fixed and paraffin embedded isogenic human cell lines containing or lacking intact PTEN alleles. PTEN IHC was 100% sensitive and 97.8% specific for detecting genomic alterations in 58 additional cell lines. PTEN protein loss was then assessed on 376 prostate tumor samples, and PTEN FISH or high resolution SNP microarray analysis was performed on a subset of these cases.
PTEN protein loss, as assessed as a dichotomous IHC variable, was highly reproducible, correlated strongly with adverse pathologic features (e.g. Gleason score and pathological stage), detected between 75% and 86% of cases with PTEN genomic loss, and was found at times in the absence of apparent genomic loss. In a cohort of 217 high risk surgically treated patients, PTEN protein loss was associated with decreased time to metastasis.
These studies validate a simple method to interrogate PTEN status in clinical specimens and support the utility of this test in future multi-center studies, clinical trials and ultimately perhaps for routine clinical care.
PMCID: PMC3195839  PMID: 21878536
Prostatic adenocarcinoma; PTEN; immunohistochemistry; FISH
9.  The growth response to androgen receptor signaling in ERα-negative human breast cells is dependent on p21 and mediated by MAPK activation 
Although a high frequency of androgen receptor (AR) expression in human breast cancers has been described, exploiting this knowledge for therapy has been challenging. This is in part because androgens can either inhibit or stimulate cell proliferation in pre-clinical models of breast cancer. In addition, many breast cancers co-express other steroid hormone receptors that can affect AR signaling, further obfuscating the effects of androgens on breast cancer cells.
To create better-defined models of AR signaling in human breast epithelial cells, we took estrogen receptor (ER)-α-negative and progesterone receptor (PR)-negative human breast epithelial cell lines, both cancerous and non-cancerous, and engineered them to express AR, thus allowing the unambiguous study of AR signaling. We cloned a full-length cDNA of human AR, and expressed this transgene in MCF-10A non-tumorigenic human breast epithelial cells and MDA-MB-231 human breast-cancer cells. We characterized the responses to AR ligand binding using various assays, and used isogenic MCF-10A p21 knock-out cell lines expressing AR to demonstrate the requirement for p21 in mediating the proliferative responses to AR signaling in human breast epithelial cells.
We found that hyperactivation of the mitogen-activated protein kinase (MAPK) pathway from both AR and epidermal growth factor receptor (EGFR) signaling resulted in a growth-inhibitory response, whereas MAPK signaling from either AR or EGFR activation resulted in cellular proliferation. Additionally, p21 gene knock-out studies confirmed that AR signaling/activation of the MAPK pathway is dependent on p21.
These studies present a new model for the analysis of AR signaling in human breast epithelial cells lacking ERα/PR expression, providing an experimental system without the potential confounding effects of ERα/PR crosstalk. Using this system, we provide a mechanistic explanation for previous observations ascribing a dual role for AR signaling in human breast cancer cells. As previous reports have shown that approximately 40% of breast cancers can lack p21 expression, our data also identify potential new caveats for exploiting AR as a target for breast cancer therapy.
PMCID: PMC3496145  PMID: 22321971
10.  Shared P53 Gene Mutation in Morphologically and Phenotypically Distinct Concurrent Primary Small Cell Neuroendocrine Carcinoma and Adenocarcinoma of the Prostate 
The Prostate  2009;69(6):603-609.
Small cell carcinoma of the prostate is an uncommon neoplasm, the origin of which has been controversial. To address this, we performed transcriptome profiling and TP53 sequencing of concurrent small cell and prostatic adenocarcinoma to determine the relationship between these entities.
We identified an unusual case of primary prostate cancer that contained adjacent acinar adenocarcinoma (Gleason score 4+3=7) and small cell carcinoma. We performed laser capture microdissection to isolate tumor components and performed gene expression and TP53 gene sequence analysis on each component, with results validated by immunohistochemistry for PSA, PSAP, PSMA, androgen receptor, NKX 3.1 and neuroendocrine markers.
Transcriptome profiling of the carcinoma components identified 99 genes with a greater than 10-fold differential expression between prostatic adenocarcinoma and small cell carcinoma, many of which have not been previously reported in prostate cancer. The small cell carcinoma component demonstrated upregulation of proliferative and neuroendocrine markers and tyrosine kinase receptors, and downregulation of cell adhesion molecules, supporting the aggressive nature of this form of carcinoma. Sequencing of the TP53 gene suggested a common clonal origin for both components.
This is the first report of a primary small cell carcinoma of the prostate subjected to extensive molecular analysis and the first to show a clonal relation between two morphologically distinct prostate cancer types. The evidence of progression to small cell carcinoma may yield important insights into the pathogenesis of this entity and provide a novel spectrum of molecular markers to further dissect cellular pathways important in tumor progression.
PMCID: PMC3170854  PMID: 19125417
carcinoma; small cell; prostate; genes; p53; DNA sequence
11.  Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old 
Molecular Cancer  2010;9:146.
Hepatocellular carcinoma (HCC) is the third-leading cause of cancer-related deaths worldwide. It is often diagnosed at an advanced stage, and hence typically has a poor prognosis. To identify distinct molecular mechanisms for early HCC we developed a rat model of liver regeneration post-hepatectomy, as well as liver cells undergoing malignant transformation and compared them to normal liver using a microarray approach. Subsequently, we performed cross-species comparative analysis coupled with copy number alterations (CNA) of independent early human HCC microarray studies to facilitate the identification of critical regulatory modules conserved across species.
We identified 35 signature genes conserved across species, and shared among different types of early human HCCs. Over 70% of signature genes were cancer-related, and more than 50% of the conserved genes were mapped to human genomic CNA regions. Functional annotation revealed genes already implicated in HCC, as well as novel genes which were not previously reported in liver tumors. A subset of differentially expressed genes was validated using quantitative RT-PCR. Concordance was also confirmed for a significant number of genes and pathways in five independent validation microarray datasets. Our results indicated alterations in a number of cancer related pathways, including p53, p38 MAPK, ERK/MAPK, PI3K/AKT, and TGF-β signaling pathways, and potential critical regulatory role of MYC, ERBB2, HNF4A, and SMAD3 for early HCC transformation.
The integrative analysis of transcriptional deregulation, genomic CNA and comparative cross species analysis brings new insights into the molecular profile of early hepatoma formation. This approach may lead to robust biomarkers for the detection of early human HCC.
PMCID: PMC2898705  PMID: 20540791
13.  Computerized Medical Records in a Private Practice 
This paper describes an online free text format microcomputer based medical records system. It incorporates a word processing front end to capture free text information, which is stored in a hierarchical data base. The information in the data base can be manipulated and searched in a flexible way. The system has been used for three years. It is presently operational in three offices.
PMCID: PMC2580344

Results 1-13 (13)