PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (63)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Molecular Pathways: The PERKs and Pitfalls of Targeting the Unfolded Protein Response in Cancer 
The endoplasmic reticulum (ER) is a highly specialized organelle that provides an oxidizing, pro-folding environment for protein synthesis and maturation. The ER also hosts a dynamic signaling network that can sense and respond to physiological changes that impact its environment, thereby influencing overall cell fate. Limitation of nutrients and oxygen have a direct effect on the efficiency of protein folding in the ER, and are classical inducers of the ER resident signaling pathway, the Unfolded Protein Response (UPR). Not only does the UPR regulate ER homeostasis in normal cells experiencing such stress, but strong evidence also suggests that tumor cells can co-opt the cytoprotective aspects of this response in order to survive the hypoxic, nutrient-restricted conditions of the tumor microenvironment.
doi:10.1158/1078-0432.CCR-13-3239
PMCID: PMC4334714  PMID: 25182515
2.  FBXO4 loss facilitates carcinogen induced papilloma development in mice 
Cancer Biology & Therapy  2015;16(5):750-755.
Cyclin D1 is frequently overexpressed in esophageal squamous cell carcinoma (ESCC) and is considered a key driver of this disease. Mutations in FBXO4, F-box specificity factor that directs SCF-mediated ubiquitylation of cyclin D1, occur in ESCC with concurrent overexpression of cyclin D1 suggesting a potential tumor suppressor role for FBXO4. To evaluate the contribution of FBXO4-dependent regulation cyclin D1 in esophageal squamous cell homeostasis, we exposed FBXO4 knockout mice to N-nitrosomethylbenzylamine (NMBA), an esophageal carcinogen. Our results revealed that loss of FBXO4 function facilitates NMBA induced papillomas in FBXO4 het (+/−) and null (−/−) mice both by numbers and sizes 11 months after single dose NMBA treatment at 2mg/kg by gavage when compared to that in wt (+/+) mice (P < 0.01). No significant difference was noted between heterozygous or nullizygous mice consistent with previous work. To assess cyclin D1/CDK4 dependence, mice were treated with the CDK4/6 specific inhibitor, PD0332991, for 4 weeks. PD0332991 treatment (150mg/kg daily), reduced tumor size and tumor number. Collectively, our data support a role for FBXO4 as a suppressor of esophageal tumorigenesis.
doi:10.1080/15384047.2015.1026512
PMCID: PMC4622573  PMID: 25801820
cyclin D1; CDK4; ESCC; FBXO4; PD0332991
3.  Enzymatic Characterization of ER Stress-Dependent Kinase, PERK, and Development of a High-Throughput Assay for Identification of PERK Inhibitors 
Journal of biomolecular screening  2014;19(7):1024-1034.
PERK is serine/threonine kinase localized to the endoplasmic reticulum (ER) membrane. PERK is activated and contributes to cell survival in response to a variety of physiological stresses that affect protein quality control in the ER, such as hypoxia, glucose depravation, increased lipid biosynthesis, and increased protein translation. Pro-survival functions of PERK are triggered by such stresses, suggesting that development of small-molecule inhibitors of PERK may be efficacious in a variety of disease scenarios. Hence, we have conducted a detailed enzymatic characterization of the PERK kinase to develop a high-throughput-screening assay (HTS) that will permit the identification of small-molecule PERK inhibitors. In addition to establishing the Km of PERK for both its primary substrate, eIF2α, and for adenosine triphosphate, further mechanistic studies revealed that PERK targets its substrate via either a random/steady-state ordered mechanism. For HTS, we developed a time-resolved fluorescence resonance energy transfer–based assay that yielded a robust Z′ factor and percent coefficient of variation value, enabling the successful screening of 79,552 compounds. This approach yielded one compound that exhibited good in vitro and cellular activity. These results demonstrate the validity of this screen and represent starting points for drug discovery efforts.
doi:10.1177/1087057114525853
PMCID: PMC4570879  PMID: 24598103
PERK; HTS; small-molecule inhibitors
4.  PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers 
Cancer discovery  2015;5(3):288-303.
Protein arginine transferase 5(PRMT5) has been implicated as a key modulator of lymphomagenesis. Whether PRMT5 has overt oncogenic function in the context of leukemia/lymphoma and whether it represents a therapeutic target remains to be established. We demonstrate that inactivation of PRMT5 inhibits colony-forming activity by multiple oncogenic-drivers including cyclin D1, c-MYC, NOTCH1 and MLL-AF9. Furthermore, we demonstrate that PRMT5 overexpression specifically cooperates with cyclin D1 to drive lymphomagenesis in a mouse model revealing inherent neoplastic activity. Molecular analysis of lymphomas, revealed that arginine methylation of p53 selectively suppresses expression of crucial proapoptotic and anti-proliferative target genes thereby sustaining tumor cell self-renewal and proliferation and bypassing the need for the acquisition of inactivating p53 mutations. Critically, analysis of human tumor specimen reveal a strong correlation between cyclin D1 overexpression and p53 methylation supporting the biomedical relevance of this pathway.
doi:10.1158/2159-8290.CD-14-0625
PMCID: PMC4355177  PMID: 25582697
Cyclin D1; CDK4; PRMT5; MEP50; Arginine Methylation
5.  Suppression of type I interferon signaling overcomes oncogene-induced senescence and mediates melanoma development and progression 
Cell reports  2016;15(1):171-180.
Oncogene activation induces DNA damage responses and cell senescence. We report a key role of type I interferons (IFN) in oncogene-induced senescence. IFN signaling-deficient melanocytes expressing activated Braf do not exhibit senescence and develop aggressive melanomas. Restoration of IFN signaling in IFN-deficient melanoma cells induces senescence and suppresses melanoma progression. Additional data from human melanoma patients and mouse transplanted tumor models suggest the importance of non-cell-autonomous IFN signaling. Inactivation of IFN pathway is mediated by the IFN receptor IFNAR1 downregulation that invariably occurs during melanoma development. Mice harboring an IFNAR1 mutant, which is partially resistant to downregulation, delay melanoma development, suppress metastatic disease, and better respond to BRAF or PD1 inhibitors. These results suggest that IFN signaling is an important tumor suppressive pathway that inhibits melanoma development and progression and argue for targeting IFNAR1 downregulation to prevent metastatic disease and improve the efficacy of molecularly-targeted and immune-targeted melanoma therapies.
Graphical Abstract
doi:10.1016/j.celrep.2016.03.006
PMCID: PMC4826807  PMID: 27052162
melanoma; Type I interferon; interferon receptor; senescence; BRAF; metastasis
6.  Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression 
Oncogene  2015;34(41):5229-5239.
Epithelial-mesenchymal transition (EMT) promotes cancer cell invasion, metastasis and treatment failure. EMT may be activated in cancer cells by reactive oxygen species (ROS). EMT may promote conversion of a subset of cancer cells from a CD44Low-CD24High (CD44L) epithelial phenotype to a CD44High-CD24-/Low (CD44H) mesenchymal phenotype, the latter associated with increased malignant properties of cancer cells. ROS are required for cells undergoing EMT while excessive ROS may induce cell death or senescence; however, little is known as to how cellular antioxidant capabilities may be regulated during EMT. Mitochondrial superoxide dismutase 2 (SOD2) is frequently overexpressed in oral and esophageal cancers. Here, we investigate mechanisms of SOD2 transcriptional regulation in EMT as well as the functional role of this antioxidant in EMT. Using well-characterized genetically engineered oral and esophageal human epithelial cell lines coupled with RNA interference (RNAi) and flow cytometric approaches, we find that transforming growth factor (TGF)-β stimulates EMT, resulting in conversion of CD44L to CD44H cells, the latter of which display SOD2 upregulation. SOD2 induction in transformed keratinocytes was concurrent with suppression of TGF-β-mediated induction of both ROS and senescence. SOD2 gene expression appeared to be transcriptionally regulated by NF-κB and ZEB2, but not ZEB1. Moreover, SOD2-mediated antioxidant activity may restrict conversion of CD44L cells to CD44H cells at the early stages of EMT. This data provides novel mechanistic insights into the dynamic expression of SOD2 during EMT. Additionally, we delineate a functional role for SOD2 in EMT via the influence of this antioxidant upon distinct CD44L and CD44H subsets of cancer cells that have been implicated in oral and esophageal tumor biology.
doi:10.1038/onc.2014.449
PMCID: PMC4530096  PMID: 25659582
SOD2; MnSOD; epithelial-mesenchymal transition; esophageal squamous cell carcinoma; reactive oxygen species; CD44
7.  Generation and characterization of an analog-sensitive PERK allele 
Cancer Biology & Therapy  2014;15(8):1106-1111.
Restriction of nutrients and oxygen in the tumor microenvironment disrupts ER homeostasis and adaptation to such stress is mediated by the key UPR effector PERK. Given its pro-tumorigenic activity, significant efforts have been made to elucidate the molecular mechanisms that underlie PERK function. Chemical-genetic approaches have recently proven instrumental in pathway mapping and interrogating kinase function. To enable a detailed study of PERK signaling we have generated an analog-sensitive PERK allele that accepts N6-alkylated ATP analogs. We find that this allele can be regulated by bulky ATP-competitive inhibitors, confirming the identity of the PERK gatekeeper residue as methionine 886. Furthermore, this analog-sensitive allele can be used to specifically label substrates with thiophosphate both in vitro and in cells. These data highlight the potential for using chemical-genetic techniques to identify novel PERK substrates, thereby providing an expanded view of PERK function and further definition of its signaling networks.
doi:10.4161/cbt.29274
PMCID: PMC4119078  PMID: 24846185
PERK; ER stress; UPR; gatekeeper; analog-sensitive kinase; chemical-genetic
8.  UPR-inducible micro-RNAs contribute to stressful situations 
Trends in biochemical sciences  2013;38(9):447-452.
The endoplasmic reticulum (ER) senses both extracellular and intracellular stresses that can disrupt its ability to facilitate the maturation of proteins destined for secretory pathways. The accumulation of misfolded proteins within the ER triggers an adaptive signaling pathway coined the Unfolded Protein Response (UPR). UPR activation contributes to cell adaptation by reducing the rate of protein translation, while increasing the synthesis of chaperones. Although we have gained considerable insight into the mechanisms that regulate gene expression and certain aspects of protein translation, the contribution of micro-RNAs (miRNAs) to UPR-dependent activities has only recently been investigated. Here, we highlight recent insights into the contribution of miRNAs to UPR-dependent cellular adaptive responses.
doi:10.1016/j.tibs.2013.06.012
PMCID: PMC4056666  PMID: 23906563
PERK; IRE1α; ATF6; ER stress; UPR; microRNA; apoptosis
9.  Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor suppressor activities 
Oncogene  2014;34(18):2347-2359.
Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference (RNAi) experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16INK4A-Rb pathway. Loss of p16INK4A or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence, but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as TGF-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.
doi:10.1038/onc.2014.169
PMCID: PMC4268095  PMID: 24931169
Notch; Rb; p16; HPV; E7; senescence; squamous cell carcinoma
10.  ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis 
The Journal of Clinical Investigation  2015;125(7):2592-2608.
The integrated stress response (ISR) is a critical mediator of cancer cell survival, and targeting the ISR inhibits tumor progression. Here, we have shown that activating transcription factor 4 (ATF4), a master transcriptional effector of the ISR, protects transformed cells against anoikis — a specialized form of apoptosis — following matrix detachment and also contributes to tumor metastatic properties. Upon loss of attachment, ATF4 activated a coordinated program of cytoprotective autophagy and antioxidant responses, including induced expression of the major antioxidant enzyme heme oxygenase 1 (HO-1). HO-1 upregulation was the result of simultaneous activation of ATF4 and the transcription factor NRF2, which converged on the HO1 promoter. Increased levels of HO-1 ameliorated oxidative stress and cell death. ATF4-deficient human fibrosarcoma cells were unable to colonize the lungs in a murine model, and reconstitution of ATF4 or HO-1 expression in ATF4-deficient cells blocked anoikis and rescued tumor lung colonization. HO-1 expression was higher in human primary and metastatic tumors compared with noncancerous tissue. Moreover, HO-1 expression correlated with reduced overall survival of patients with lung adenocarcinoma and glioblastoma. These results establish HO-1 as a mediator of ATF4-dependent anoikis resistance and tumor metastasis and suggest ATF4 and HO-1 as potential targets for therapeutic intervention in solid tumors.
doi:10.1172/JCI78031
PMCID: PMC4563676  PMID: 26011642
11.  The FBXO4 Tumor Suppressor Functions as a Barrier to BrafV600E-Dependent Metastatic Melanoma 
Molecular and Cellular Biology  2013;33(22):4422-4433.
Cyclin D1–cyclin-dependent kinase 4/6 (CDK4/6) dysregulation is a major contributor to melanomagenesis. Clinical evidence has revealed that p16INK4A, an allosteric inhibitor of CDK4/6, is inactivated in over half of human melanomas, and numerous animal models have demonstrated that p16INK4A deletion promotes melanoma. FBXO4, a specificity factor for the E3 ligase that directs timely cyclin D1 proteolysis, has not been studied in melanoma. We demonstrate that Fbxo4 deficiency induces Braf-driven melanoma and that this phenotype depends on cyclin D1 accumulation in mice, underscoring the importance of this ubiquitin ligase in tumor suppression. Furthermore, we have identified a substrate-binding mutation, FBXO4 I377M, that selectively disrupts cyclin D1 degradation while preserving proteolysis of the other known FBXO4 substrate, TRF1. The I377M mutation and Fbxo4 deficiency result in nuclear accumulation of cyclin D1, a key transforming neoplastic event. Collectively, these data provide evidence that FBXO4 dysfunction, as a mechanism for cyclin D1 overexpression, is a contributor to human malignancy.
doi:10.1128/MCB.00706-13
PMCID: PMC3838190  PMID: 24019069
12.  Ubiquitin-Dependent Proteolysis in G1/S Phase Control and Its Relationship with Tumor Susceptibility 
Genes & Cancer  2010;1(7):717-724.
Cell division depends upon the coordinated action of positive and negative regulatory factors that ensure high fidelity replication of the genome and its equivalent separation into daughter cells following cytokinesis. The role of positive factors such as the cyclin-dependent kinases in promoting cell division is firmly established, as is the function of CDK inhibitors and phosphatases that antagonize CDKs. In addition to these, regulated protein destruction is now appreciated as essential for temporal regulation of cell cycle transitions. Protein degradation serves as an irreversible switch that ensures temporally regulated cell cycle transitions. Signal-dependent regulation of protein degradation is best understood with regard to the 26S proteasome. Proteins are directed to this machine subsequent to enzymatic transfer of a highly conserved small polypeptide, ubiquitin. The focus of this review is the regulatory molecules that direct the regulated attachment of ubiquitin, polyubiquitylation, to proteins destined for degradation as cells transition through the G1 phase into S phase. During the past decade, it has become increasingly apparent that these molecules are critical mediators of normal cell proliferation, and as such, they are frequently deregulated in human cancers.
doi:10.1177/1947601910382902
PMCID: PMC2991141  PMID: 21113395
F-box; cullin; cyclin; CDK
13.  Ubiquitin and Cancer 
Genes & Cancer  2010;1(7):679-680.
doi:10.1177/1947601910383565
PMCID: PMC3092239  PMID: 21779465
14.  miR-211 is a pro-survival micro-RNA that regulates chop expression in a PERK-dependent manner 
Molecular cell  2012;48(3):353-364.
Micro-RNAs typically function at the level of post-transcriptional gene silencing within the cytoplasm; however increasing evidence suggests that they may also function in nuclear, Argonaut containing complexes, to directly repress target gene transcription. We have investigated the role of micro-RNAs in mediating endoplasmic reticulum (ER) stress responses. ER stress triggers the activation of three signaling molecules: Ire-1α/β, PERK and ATF6 whose function is to facilitate adaption to the ensuing stress. We demonstrate that PERK induces miR-211, which in turn attenuates stress-dependent expression of the pro-apoptotic transcription factor chop/gadd153. MiR-211 directly targets the proximal chop/gadd153 promoter where it increases histone methylation and represses chop expression. Maximal chop accumulation ultimately correlates with miR-211 down regulation. Our data suggests a model where PERK-dependent miR-211 induction prevents premature chop accumulation and thereby provides a window of opportunity for the cell to re-establish homeostasis prior to apoptotic commitment.
doi:10.1016/j.molcel.2012.08.025
PMCID: PMC3496065  PMID: 23022383
miR-211; histone methylation; PERK; CHOP
15.  PERK Is Required in the Adult Pancreas and Is Essential for Maintenance of Glucose Homeostasis 
Molecular and Cellular Biology  2012;32(24):5129-5139.
Germ line PERK mutations are associated with diabetes mellitus and growth retardation in both rodents and humans. In contrast, late embryonic excision of PERK permits islet development and was found to prevent onset of diabetes, suggesting that PERK may be dispensable in the adult pancreas. To definitively establish the functional role of PERK in adult pancreata, we generated mice harboring a conditional PERK allele in which excision is regulated by tamoxifen administration. Deletion of PERK in either young adult or mature adult mice resulted in hyperglycemia associated with loss of islet and β cell architecture. PERK excision triggered intracellular accumulation of proinsulin and Glut2, massive endoplasmic reticulum (ER) expansion, and compensatory activation of the remaining unfolded-protein response (UPR) signaling pathways specifically in pancreatic tissue. Although PERK excision increased β cell death, this was not a result of decreased proliferation as previously reported. In contrast, a significant and specific increase in β cell proliferation was observed, a result reflecting increased cyclin D1 accumulation. This work demonstrates that contrary to expectations, PERK is required for secretory homeostasis and β cell survival in adult mice.
doi:10.1128/MCB.01009-12
PMCID: PMC3510549  PMID: 23071091
16.  PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation 
Molecular and Cellular Biology  2012;32(12):2268-2278.
The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.
doi:10.1128/MCB.00063-12
PMCID: PMC3372262  PMID: 22493067
17.  NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network 
Gastroenterology  2010;139(6):2113-2123.
Background & Aims
The Notch receptor family regulates cell fate through cell-cell communication. CSL (CBF-1/RBP-jκ, Su(H), Lag-1) drives canonical Notch-mediated gene transcription during cell lineage specification, differentiation and proliferation in the hematopoietic system, the intestine, the pancreas and the skin. However, the functional roles of Notch in esophageal squamous epithelial biology remain unknown.
Methods
Normal esophageal keratinocytes were stimulated with calcium chloride to induce terminal differentiation. The squamous epithelia were reconstituted in organotypic three-dimensional culture, a form of human tissue engineering. Notch was inhibited in culture with a γ-secretase inhibitor or dominant negative mastermind-like1 (DNMAML1). The roles of Notch receptors were evaluated by in vitro gain-of-function and loss-of-function experiments. Additionally, DNMAML1 was targeted to the mouse esophagus by cytokeratin K14 promoter-driven Cre (K14Cre) recombination of Lox-STOP-Lox-DNMAML1. Notch-regulated gene expression was determined by reporter transfection, chromatin immunoprecipitation (ChIP) assays, quantitative reverse-transcription polymerase chain reactions (RT-PCR), Western blotting, immunofluorescence and immunohistochemistry.
Results
NOTCH1 (N1) was activated at the onset of squamous differentiation in the esophagus. Intracellular domain of N1 (ICN1) directly activated NOTCH3 (N3) transcription, inducing HES5 and early differentiation markers such as involucrin (IVL) and cytokeratin CK13 in a CSL-dependent fashion. N3 enhanced ICN1 activity and was required for squamous differentiation. Loss of Notch signaling in K14Cre;DNMAML1 mice perturbed esophageal squamous differentiation and resulted in N3 loss and basal cell hyperplasia.
Conclusions
Notch signaling is important for esophageal epithelial homeostasis. In particular, the crosstalk of N3 with N1 during differentiation provides novel, mechanistic insights into Notch signaling and squamous epithelial biology.
doi:10.1053/j.gastro.2010.08.040
PMCID: PMC2997138  PMID: 20801121
NOTCH1; NOTCH3; esophageal epithelium; squamous differentiation
18.  The ζ Isoform of Diacylglycerol Kinase Plays a Predominant Role in Regulatory T Cell Development and TCR-Mediated Ras Signaling 
Science signaling  2013;6(303):ra102.
Diacylglycerol (DAG) is a critical second messenger that mediates T cell receptor (TCR)–stimulated signaling. The abundance of DAG is reduced by the diacylglycerol kinases (DGKs), which catalyze the conversion of DAG to phosphatidic acid (PA) and thus inhibit DAG-mediated signaling. In T cells, the predominant DGK isoforms are DGKα and DGKζ, and deletion of the genes encoding either isoform enhances DAG-mediated signaling. We found that DGKζ, but not DGKα, suppressed the development of natural regulatory T (Treg) cells and predominantly mediated Ras and Akt signaling downstream of the TCR. The differential functions of DGKα and DGKζ were not attributable to differences in protein abundance in T cells or in their localization to the contact sites between T cells and antigen-presenting cells. RasGRP1, a key DAG-mediated activator of Ras signaling, associated to a greater extent with DGKζ than with DGKα; however, in silico modeling of TCR-stimulated Ras activation suggested that a difference in RasGRP1 binding affinity was not sufficient to cause differences in the functions of each DGK isoform. Rather, the model suggested that a greater catalytic rate for DGKζ than for DGKα might lead to DGKζ exhibiting increased suppression of Ras-mediated signals compared to DGKα. Consistent with this notion, experimental studies demonstrated that DGKζ was more effective than DGKα at catalyzing the metabolism of DAG to PA after TCR stimulation. The enhanced effective enzymatic production of PA by DGKζ is therefore one possible mechanism underlying the dominant functions of DGKζ in modulating Treg cell development.
doi:10.1126/scisignal.2004373
PMCID: PMC4096120  PMID: 24280043
19.  PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage 
Oncogene  2010;29(27):3881-3895.
In order to proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential anti-neoplastic targets. However, recent investigations into the role of the ER resident protein kinase PERK have paradoxically suggested both pro- and anti-tumorigenic properties. We have utilized animal models of mammary carcinoma to interrogate PERK contribution in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle due to the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is utilized during both tumor initiation and expansion to maintain redox homeostasis and thereby facilitates tumor growth.
doi:10.1038/onc.2010.153
PMCID: PMC2900533  PMID: 20453876
PERK; Nrf2; ROS; DNA damage; cell cycle checkpoints
20.  EGFR Inhibition Promotes an Aggressive Invasion Pattern Mediated by Mesenchymal-like Tumor Cells within Squamous Cell Carcinomas 
Molecular cancer therapeutics  2013;12(10):2176-2186.
Squamous cell carcinomas (SCCs) with an infiltrative invasion pattern carry a higher risk of treatment failure. Such infiltrative invasion may be mediated by a mesenchymal-like subpopulation of malignant cells that we have previously shown to arise from epithelial to mesenchymal transition (EMT) and resist epidermal growth factor receptor (EGFR) targeting. Here we demonstrate that SCCs with infiltrative, high risk invasion patterns contain abundant mesenchymal-like cells, which are rare in tumors with low risk patterns. This cellular heterogeneity was modeled accurately in three dimensional culture using collagen-embedded SCC spheroids, which revealed distinct invasive fronts created by collective migration of E-cadherin-positive cells versus infiltrative migration of individual mesenchymal-like cells. Because EGFR expression by mesenchymal-like cells was diminished in the spheroid model and in human SCCs, we hypothesized that SCCs shift toward infiltrative invasion mediated by this subpopulation during anti-EGFR therapy. Anti-EGFR treatment of spheroids using erlotinib or cetuximab enhanced infiltrative invasion by targeting collective migration by E-cadherin-positive cells while sparing mesenchymal-like cells; by contrast, spheroid invasion in absence of mesenchymal-like cells was abrogated by erlotinib. Similarly, cetuximab treatment of xenografts containing mesenchymal-like cells created an infiltrative invasive front comprised of this subpopulation, whereas no such shift was observed upon treating xenografts lacking these cells. These results implicate mesenchymal-like SCC cells as key mediators of the infiltrative invasion seen in tumors with locally aggressive behavior. They further demonstrate that EGFR inhibition can promote an infiltrative invasion front comprised of mesenchymal-like cells preferentially in tumors where they are abundant prior to therapy.
doi:10.1158/1535-7163.MCT-12-1210
PMCID: PMC3796003  PMID: 23939378
pattern of invasion; EGFR inhibition; squamous cell carcinoma; EMT; tumor heterogeneity
21.  Nuclear cyclin D1: An oncogenic driver in human cancer 
Journal of cellular physiology  2009;220(2):292-296.
Perturbations in the regulation of the core cell cycle machinery are frequently observed in human cancers. Cyclin D1 which functions as a mitogenic sensor and allosteric activator of CDK4/6, is one of the more frequently altered cell cycle regulators in cancers. Cyclin D1 is frequently overexpressed in cancers and its overexpression can be attributed to many factors including increased transcription, translation, and protein stability. Although cyclin D1 overexpression is clearly implicated in the affected cancers, overexpression of cyclin D1 is not sufficient to drive oncogenic transformation. Rather, emerging evidence suggests that nuclear retention of cyclin D1 resulting from altered nuclear trafficking and proteolysis is critical for the manifestation of its oncogenicity. This review provides a brief overview of current data documenting various mechanisms underlying aberrant cyclin D1 regulation in human cancers and their impact on neoplastic transformation.
doi:10.1002/jcp.21791
PMCID: PMC2874239  PMID: 19415697
22.  Anti-tumorigenic effects of Type 1 interferon are subdued by integrated stress responses 
Oncogene  2012;32(36):4214-4221.
Viral and pharmacologic inducers of PKR-like ER kinase (PERK) were shown to accelerate the phosphorylation-dependent degradation of the IFNAR1 chain of the type 1 interferon (IFN) receptor and to limit cell sensitivity to IFN. Here we report that hypoxia can elicit these effects in a PERK-dependent manner. The altered fate of IFNAR1 affected by signaling downstream of PERK depends on phosphorylation of eIF2α and ensuing activation of p38α kinase. Activators of other eIF2α kinases such as PKR or GCN2 are also capable of eliminating IFNAR1 and blunting IFN responses. Modulation of constitutive PKR activity in human breast cancer cells stabilizes IFNAR1 and sensitizes these cells to IFNAR1-dependent anti-tumorigenic effects. Whereas downregulation of IFNAR1 and impaired IFNAR1 signaling can be elicited in response to amino acid deficit, the knockdown of GCN2 in melanoma cells reverses these phenotypes. We propose that, in cancer cells and the tumor microenvironment, activation of diverse eIF2α kinases followed by IFNAR1 downregulation enables multiple cellular components of tumor tissue to evade the direct and indirect anti-tumorigenic effects of Type 1 IFN.
doi:10.1038/onc.2012.439
PMCID: PMC3766494  PMID: 23045272
interferon; tumor microenvironment; integrated stress response; PERK; PKR; GCN2; IFNAR1
23.  A common p53 mutation (R175H) activates c-Met receptor tyrosine kinase to enhance tumor cell invasion 
Cancer Biology & Therapy  2013;14(9):853-859.
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive forms of human cancer with poor prognosis due to late diagnosis and metastasis. Common genomic alterations in ESCC include p53 mutation, p120ctn inactivation, and overexpression of oncogenes such as cyclin D1, EGFR, and c-Met. Using esophageal epithelial cells transformed by the overexpression of EGFR and p53R175H, we find novel evidence of a functional link between p53R175H and the c-Met receptor tyrosine kinase to mediate tumor cell invasion. Increased c-Met receptor activation was observed upon p53R175H expression and enhanced further upon subsequent EGFR overexpression. We inhibited c-Met phosphorylation, resulting in diminished invasion of the genetically transformed primary esophageal epithelial cells (EPC-hTERT-EGFR-p53R175H), suggesting that the mechanism of increased invasiveness upon EGFR and p53R175H expression may be the result of increased c-Met activation. These results suggest that the use of therapeutics directed at c-Met in ESCC and other squamous cell cancers.
doi:10.4161/cbt.25406
PMCID: PMC3909554  PMID: 23792586
p53 mutation; c-Met; esophageal cancer; tumor invasion
24.  Lysine 269 is essential for cyclin D1 ubiquitylation by the SCFFbx4/αB-crystallin ligase and subsequent proteasome-dependent degradation 
Oncogene  2009;28(49):4317-4325.
Protein ubiquitylation is a complex enzymatic process that results in the covalent attachment of ubiquitin, via Gly-76 of ubiquitin, to an ε-NH2-group of an internal lysine residue in a given substrate. While E3 ligases frequently utilize lysines adjacent to the degron within the substrate, many substrates can be targeted to the proteasome via polyubiquitylation of any lysine. We have assessed the role of lysine residues proximal to the cyclin D1 phosphodegron for ubiquitylation by the SCFFbx4/αB-crystallin ubiquitin ligase and subsequent proteasome-dependent degradation of cyclin D1. The work described herein reveals a requisite role for Lys-269 (K269) for the rapid, poly-ubiquitin mediated degradation of cyclin D1. Mutation of lysine 269, which is proximal to the phosphodegron sequence surrounding Thr-286 in cyclin D1, not only stabilizes cyclin D1, but also triggers cyclin D1 accumulation within the nucleus thereby promoting cell transformation. In addition, D1-K269R is resistant to genotoxic stress induced degradation, similar to non-phosphorylatable D1-T286A, supporting the critical role for the post-translational regulation of cyclin D1 in the response to DNA damaging agents. Strikingly, while mutation of lysine 269 to arginine inhibits cyclin D1 degradation, it does not inhibit cyclin D1 ubiquitylation in vivo demonstrating that ubiquitylation of a specific lysine can influence substrate targeting to the 26S proteasome.
doi:10.1038/onc.2009.287
PMCID: PMC2794935  PMID: 19767775
25.  Expression of Constitutively Nuclear Cyclin D1 in Murine Lymphocytes Induces B-Cell Lymphoma 
Oncogene  2006;25(7):998-1007.
Mantle cell lymphoma (MCL) is a B-cell lymphoma characterized by overexpression of cyclin D1 due to the t(11;14) chromosomal translocation. While expression of cyclin D1 is correlates with MCL development, expression of wild type cyclin D1 transgene in murine lymphocytes is unable to drive B-cell lymphoma. Because cyclin D1 mutants that are refractory to nuclear export display heighten oncogenicity in vitro compared with wild type D1, we generated mice expressing FLAG-D1/T286A, a constitutively nuclear mutant, under the control of the immunoglobulin enhancer, Eµ. D1/T286A transgenic mice universally develop a mature B-cell lymphoma. Expression of D1/T286A in B lymphocytes results in promiscuous S-phase entry and increased apoptosis in spleens of young pre-malignant mice. Lymphoma onset correlates with loss of p53 suggesting that inactivation of the p53 signaling axis precedes lymphoma development. Our results describe a cyclin D1-driven model of B-cell lymphomagenesis and provide evidence that nuclear-retention of cyclin D1 is oncogenic in vivo.
doi:10.1038/sj.onc.1209147
PMCID: PMC2832762  PMID: 16247460
CDK4; cyclin D1; mantle cell lymphoma; apoptosis

Results 1-25 (63)