Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Liver Stiffness Decreases Rapidly in Response to Successful Hepatitis C Treatment and Then Plateaus 
PLoS ONE  2016;11(7):e0159413.
Background and Aim
To investigate the impact of a sustained virological response (SVR) to hepatitis C virus (HCV) treatment on liver stiffness (LS).
LS, measured by transient elastography (FibroScan), demographic and laboratory data of patients treated with interferon (IFN)-containing or IFN-free regimens who had an SVR24 (undetectable HCV viral load 24 weeks after the end of treatment) were analyzed using two-tailed paired t-tests, Mann-Whitney Wilcoxon Signed-rank tests and linear regression. Two time intervals were investigated: pre-treatment to SVR24 and SVR24 to the end of follow-up. LS scores ≥ 12.5 kPa indicated LS-defined cirrhosis. A p-value below 0.05 was considered statistically significant.
The median age of the patients (n = 100) was 60 years [IQR (interquartile range) 54–64); 72% were male; 60% were Caucasian; and 42% had cirrhosis pre-treatment according to the FibroScan measurement. The median LS score dropped from 10.40 kPa (IQR: 7.25–18.60) pre-treatment to 7.60 kPa (IQR: 5.60–12.38) at SVR24, p <0.01. Among the 42 patients with LS-defined cirrhosis pre-treatment, 25 (60%) of patients still had LS scores ≥ 12.5 kPa at SVR24, indicating the persistence of cirrhosis. The median change in LS was similar in patients receiving IFN-containing and IFN-free regimens: -1.95 kPa (IQR: -5.75 –-0.38) versus -2.40 kPa (IQR: -7.70 –-0.23), p = 0.74. Among 56 patients with a post-SVR24 LS measurement, the LS score changed by an additional -0.90 kPa (IQR: -2.98–0.5) during a median follow-up time of 1.17 (IQR: 0.88–1.63) years, which was not a statistically significant decrease (p = 0.99).
LS decreased from pre-treatment to SVR24, but did not decrease significantly during additional follow-up. Earlier treatment may be needed to reduce the burden of liver disease.
PMCID: PMC4956253  PMID: 27442255
2.  Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression 
Oncogene  2015;34(41):5229-5239.
Epithelial-mesenchymal transition (EMT) promotes cancer cell invasion, metastasis and treatment failure. EMT may be activated in cancer cells by reactive oxygen species (ROS). EMT may promote conversion of a subset of cancer cells from a CD44Low-CD24High (CD44L) epithelial phenotype to a CD44High-CD24-/Low (CD44H) mesenchymal phenotype, the latter associated with increased malignant properties of cancer cells. ROS are required for cells undergoing EMT while excessive ROS may induce cell death or senescence; however, little is known as to how cellular antioxidant capabilities may be regulated during EMT. Mitochondrial superoxide dismutase 2 (SOD2) is frequently overexpressed in oral and esophageal cancers. Here, we investigate mechanisms of SOD2 transcriptional regulation in EMT as well as the functional role of this antioxidant in EMT. Using well-characterized genetically engineered oral and esophageal human epithelial cell lines coupled with RNA interference (RNAi) and flow cytometric approaches, we find that transforming growth factor (TGF)-β stimulates EMT, resulting in conversion of CD44L to CD44H cells, the latter of which display SOD2 upregulation. SOD2 induction in transformed keratinocytes was concurrent with suppression of TGF-β-mediated induction of both ROS and senescence. SOD2 gene expression appeared to be transcriptionally regulated by NF-κB and ZEB2, but not ZEB1. Moreover, SOD2-mediated antioxidant activity may restrict conversion of CD44L cells to CD44H cells at the early stages of EMT. This data provides novel mechanistic insights into the dynamic expression of SOD2 during EMT. Additionally, we delineate a functional role for SOD2 in EMT via the influence of this antioxidant upon distinct CD44L and CD44H subsets of cancer cells that have been implicated in oral and esophageal tumor biology.
PMCID: PMC4530096  PMID: 25659582
SOD2; MnSOD; epithelial-mesenchymal transition; esophageal squamous cell carcinoma; reactive oxygen species; CD44
3.  IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment 
Insulin-like growth factor binding protein 3 (IGFBP3), a hypoxia-inducible gene, regulates a variety of cellular processes including cell proliferation, senescence, apoptosis and epithelial-mesenchymal transition (EMT). IGFBP3 has been linked to the pathogenesis of cancers. Most previous studies focus upon proapoptotic tumor suppressor activities of IGFBP3. Nevertheless, IGFBP3 is overexpressed in certain cancers including esophageal squamous cell carcinoma (ESCC), one of the most aggressive forms of squamous cell carcinomas (SCCs). The tumor-promoting activities of IGFBP3 remain poorly understood in part due to a lack of understanding as to how the tumor microenvironment may influence IGFBP3 expression and how IGFBP3 may in turn influence heterogeneous intratumoral cell populations. Here, we show that IGFBP3 overexpression is associated with poor postsurgical prognosis in ESCC patients. In xenograft transplantation models with genetically engineered ESCC cells, IGFBP3 contributes to tumor progression with a concurrent induction of a subset of tumor cells showing high expression of CD44 (CD44H), a major cell surface receptor for hyaluronic acid, implicated in invasion, metastasis and drug resistance. Our gain-of-function and loss-of-function experiments reveal that IGFBP3 mediates the induction of intratumoral CD44H cells. IGFBP3 cooperates with hypoxia to mediate the induction of CD44H cells by suppressing reactive oxygen species (ROS) in an insulin-like growth factor-independent fashion. Thus, our study sheds light on the growth stimulatory functions of IGFPB3 in cancer, gaining a novel mechanistic insight into the functional interplay between the tumor microenvironment and IGFBP3.
PMCID: PMC3902230  PMID: 24482736
CD44; esophageal; squamous cell carcinoma; hypoxia; IGFBP3 and reactive oxygen species
4.  Notch receptor inhibition reveals the importance of cyclin D1 and Wnt signaling in invasive esophageal squamous cell carcinoma 
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive forms of squamous cell carcinomas. Common genetic lesions in ESCC include p53 mutations and EGFR overexpression, both of which have been implicated in negative regulation of Notch signaling. In addition, cyclin D1 is overexpressed in ESCC and can be activated via EGFR, Notch and Wnt signaling. To elucidate how these genetic lesions may interact during the development and progression of ESCC, we tested a panel of genetically engineered human esophageal cells (keratinocytes) in organotypic 3D culture (OTC), a form of human tissue engineering. Notch signaling was suppressed in culture and mice by dominant negative Mastermind-like1 (DNMAML1), a genetic pan-Notch inhibitor. DNMAML1 mice were subjected to 4-Nitroquinoline 1-oxide-induced oral-esophageal carcinogenesis. Highly invasive characteristics of primary human ESCC were recapitulated in OTC as well as DNMAML1 mice. In OTC, cyclin D1 overexpression induced squamous hyperplasia. Concurrent EGFR overexpression and mutant p53 resulted in transformation and invasive growth. Interestingly, cell proliferation appeared to be regulated differentially between those committed to squamous-cell differentiation and those invading into the stroma. Invasive cells exhibited Notch-independent activation of cyclin D1 and Wnt signaling. Within the oral-esophageal squamous epithelia, Notch signaling regulated squamous-cell differentiation to maintain epithelial integrity, and thus may act as a tumor suppressor by preventing the development of a tumor-promoting inflammatory microenvironment.
PMCID: PMC3410579  PMID: 22860235
Esophageal squamous cell carcinoma; organotypic 3D culture; EGFR; P53; cyclin D1; Wnt; Notch; squamous-cell differentiation; invasion; 4-Nitroquinoline 1-oxide

Results 1-4 (4)