Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer 
An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers. We demonstrate through estrogen response element luciferase and phosphorylation-ER mutants that the effects of glyceollin arise from mechanisms distinct from conventional endocrine therapies. We show that glyceollin suppresses estrogen response element activity; however, it does not affect ER-alpha phosphorylation levels. Additionally we show that glyceollin suppresses the phosphorylation of proteins known to crosstalk with ER-alpha signaling, specifically we demonstrate an inhibition of Ribosomal Protein S6 Kinase, 70kDa (p70S6) phosphorylation following glyceollin treatment. Our data suggests a mechanism for glyceollin inhibition of ER through the induced suppression of p70S6 and demonstrates novel mechanisms for ER inhibition.
PMCID: PMC4424142  PMID: 25771071
Glyceollin; endocrine therapy; p70S6; estrogen receptor (ER); mTOR; anti-estrogen; kinase signaling
2.  A Ligand-Based Drug Design. Discovery of 4-Trifluoromethyl-7,8-pyranocoumarin as a Selective Inhibitor of Human Cytochrome P450 1A2 
Journal of medicinal chemistry  2015;58(16):6481-6493.
In humans, cytochrome P450 1A2 is the major enzyme metabolizing environmental arylamines or heterocyclic amines into carcinogens. Since evidence shows that planar triangle-shaped molecules are capable of selectively inhibiting P450 1A2, 16 triangular flavone, and coumarin derivatives were designed and synthesized for these studies. Among these compounds, 7,8-furanoflavone time-dependently inhibits P450 1A2 with a KI value of 0.44 μM. With a 5 min preincubation in the presence of NADPH, 0.01 μM 7,8-furanoflavone completely inactivates P450 1A2 but does not influence the activities of P450s 1A1 and 1B1. Another target compound, 7,8-pyrano-4-trifluoromethylcoumarin, is found to be a competitive inhibitor, showing high selectivity for the inhibition of P450 1A2 with a Ki of 0.39 μM, 155- and 52-fold lower than its Ki values against P450s 1A1 and 1B1, respectively. In yeast AhR activation assays, 7,8-pyrano-4-trifluoromethylcoumarin does not activate aryl hydrocarbon receptor when the concentration is lower than 1 μM, suggesting that this compound would not up-regulate AhR-caused P450 enzyme expression. In-cell P450 1A2 inhibition assays show that 7,8-pyrano-4-trifluoromethylcoumarin decreases the MROD activity in HepG2 cells at concentrations higher than 1 μM. Thus, using 7,8-pyrano-4-trifluoromethylcoumarin, a selective and specific P450 1A2 action suppression could be achieved, indicating the potential for the development of P450 1A2-targeting cancer preventive agents.
PMCID: PMC4826332  PMID: 26222195
3.  Pharmacological inhibition of sphingosine kinase isoforms alters estrogen receptor signaling in human breast cancer 
Recently, crosstalk between sphingolipid signaling pathways and steroid hormones has been illuminated as a possible therapeutic target. Sphingosine kinase (SK), the key enzyme metabolizing pro-apoptotic ceramide to pro-survival sphingosine-1-phosphate (S1P), is a promising therapeutic target for solid tumor cancers. In this study, we examined the ability of pharmacological inhibition of S1P formation to block estrogen signaling as a targeted breast cancer therapy. We found that the Sphk1/2 selective inhibitor (SK inhibitor (SKI))-II, blocked breast cancer viability, clonogenic survival and proliferation. Furthermore, SKI-II dose-dependently decreased estrogen-stimulated estrogen response element transcriptional activity and diminished mRNA levels of the estrogen receptor (ER)-regulated genes progesterone receptor and steroid derived factor-1. This inhibitor binds the ER directly in the antagonist ligand-binding domain. Taken together, our results suggest that SKIs have the ability to act as novel ER signaling inhibitors in breast carcinoma.
PMCID: PMC4007162  PMID: 21321095
4.  Inhibition of p38-MAPK alters SRC coactivation and estrogen receptor phosphorylation 
Cancer Biology & Therapy  2012;13(11):1026-1033.
The p38 mitogen activated protein kinase pathway (MAPK) is known to promote cell survival, endocrine therapy resistance and hormone independent breast cancer cell proliferation. Therefore, we utilized the novel p38 inhibitor RWJ67657 to investigate the relevance of targeting this pathway in the ER+ breast cancer cell line MCF-7. Our results show that RWJ67657 inhibits both basal and estrogen stimulated phosphorylation of p38α, resulting in decreased activation of the downstream p38α targets hsp27 and MAPAPK. Furthermore, inhibition of p38α by RWJ67657 blocks clonogenic survival of MCF-7 cells with little effect on non-cancerous breast epithelial cells. Even though p38α is known to phosphorylate ERα at residue within ER’s hinge region at Thr311, resulting in increased ERα transcriptional activation, our results suggest RWJ67657 inhibits the p38α-induced activation of ER by targeting both the AF-1 and AF-2 activation domains within ERα. We further show that RWJ67657 decreases the transcriptional activity of the ER coactivators SRC-1, SRC-2 and SRC-3. Taken together, our results strongly suggest that in addition to phosphorylating Thr311 within ERα, p38α indirectly activates the ER by phosphorylation and stimulation of the known ERα coactivators, SRC-1, -2 and-3. Overall, our data underscore the therapeutic potential of targeting the p38 MAPK pathway in the treatment of ER+ breast cancer.
PMCID: PMC3461809  PMID: 22825349
p38; mitogen-activated protein kinase; estrogen receptor; breast cancer; SRC; drug discovery
5.  Gαo potentiates estrogen receptor α activity via the ERK signaling pathway 
The Journal of endocrinology  2012;214(1):45-54.
The estrogen receptor α (ERα) is a transcription factor that mediates the biological effects of 17β-estradiol (E2). ERα transcriptional activity is also regulated by cytoplasmic signaling cascades. Here, several Gα protein subunits were tested for their ability to regulate ERα activity. Reporter assays revealed that overexpression of a constitutively active Gαo protein subunit potentiated ERα activity in the absence and presence of E2. Transient transfection of the human breast cancer cell line MCF-7 showed that Gαo augments the transcription of several ERα-regulated genes. Western blots of HEK293T cells transfected with ER±Gαo revealed that Gαo stimulated phosphorylation of ERK 1/2 and subsequently increased the phosphorylation of ERα on serine 118. In summary, our results show that Gαo, through activation of the MAPK pathway, plays a role in the regulation of ERα activity.
PMCID: PMC3614348  PMID: 22562654
6.  Phytoalexins, miRNAs and Breast Cancer: A Review of Phytochemical-mediated miRNA Regulation in Breast Cancer 
There is growing interest in the diverse signaling pathways that regulate and affect breast tumorigenesis, including the role of phytochemicals and the emerging role of microRNAs (miRNAs). Recent studies demonstrate that miRNAs regulate fundamental cellular and developmental processes at the transcriptional and translational level under normal and disease conditions. While there is growing evidence to support the role of phytoalexin-mediated miRNA regulation of cancer, few reports address this role in breast cancer. Recent reports by our group and others demonstrate that natural products, including stilbenes, curcumin, and glyceollins, could alter the expression of specific miRNAs, which may lead to increased sensitivity of cancer cells to conventional anti-cancer agents and, therefore, hormone-dependent and hormone-independent tumor growth inhibition. This review will discuss how dietary intake of natural products, by regulating specific miRNAs, contribute to the prevention and treatment of breast cancer.
PMCID: PMC3628743  PMID: 23395943
Phytoalexins; microRNA; breast cancer; estrogen
7.  Regulation of ERα-mediated transcription of Bcl-2 by PI3K-AKT crosstalk: Implications for breast cancer cell survival 
International journal of oncology  2010;37(3):541-550.
Both estrogen, through the estrogen receptor (ER), and growth factors, through the phosphatidylinositol-3-kinase (PI3K)-AKT pathway, have been shown to independently promote cell survival. Here, we investigated the role of ER/PI3K-AKT crosstalk in the regulation of cell survival in MCF-7 breast carcinoma cells. The ER inhibitor ICI 182,780 was used to determine the requirement of the ER for estrogen in the suppression of tumor necrosis factor-α (TNFα) induced apoptosis. Gene reporter assays and Western blot analyses were used to determine the involvement of the pro-survival factor Bcl-2 and the coactivator GRIP1 in this survival crosstalk. We demonstrated that an intact ER signaling pathway was required for estrogen to suppress apoptosis induced by TNFα. Our gene reporter assays revealed that ERα, not ERβ, was targeted by AKT, resulting in transcriptional potentiation of the full-length Bcl-2 promoter, ultimately leading to increased Bcl-2 protein levels. AKT targeted both activation function (AF) domains of the ERα for maximal induction of Bcl-2 reporter activity, although the AF-II domain was predominately targeted. In addition, AKT also caused an upregulation of GRIP1 protein levels. Finally, AKT and GRIP1 cooperated to increase Bcl-2 protein expression to a greater level than either factor alone. Collectively, our study suggests a role for ER/PI3K-AKT crosstalk in cell survival and documents the ability of AKT to regulate Bcl-2 expression via differential activation of ERα and ERβ as well as regulation of GRIP1.
PMCID: PMC3613138  PMID: 20664923
estrogen receptor; breast cancer; AKT; cell signaling; cell survival
8.  Insulin-Like Growth Factor-1 Signaling Regulates miRNA Expression in MCF-7 Breast Cancer Cell Line 
PLoS ONE  2012;7(11):e49067.
In breast carcinomas, increased levels of insulin-like growth factor 1 (IGF-1) can act as a mitogen to augment tumorigenesis through the regulation of MAPK and AKT signaling pathways. Signaling through these two pathways allows IGF-1 to employ mechanisms that favor proliferation and cellular survival. Here we demonstrate a subset of previously described tumor suppressor and oncogenic microRNAs (miRNAs) that are under the direct regulation of IGF-1 signaling. Additionally, we show that the selective inhibition of either the MAPK or AKT pathways prior to IGF-1 stimulation prevents the expression of previously described tumor suppressor miRNAs that are family and cluster specific. Here we have defined, for the first time, specific miRNAs under the direct regulation of IGF-1 signaling in the estrogen receptor positive MCF-7 breast cancer cell line and demonstrate kinase signaling as a modulator of expression for a small subset of microRNAs. Taken together, these data give new insights into mechanisms governing IGF-1 signaling in breast cancer.
PMCID: PMC3511482  PMID: 23226206
9.  Effects of SDF-1-CXCR4 signaling on microRNA expression and tumorigenesis in estrogen receptor-alpha (ER-α)-positive breast cancer cells 
Experimental Cell Research  2011;317(18):2573-2581.
The majority of breast cancer cases ultimately become unresponsive to endocrine therapies, and this progression of breast cancer from hormone-responsive to hormone-independent represents an area in need of further research. Additionally, hormone-independent carcinomas are characterized as being more aggressive and metastatic, key features of more advanced disease. Having previously shown the ability of the stromal-cell derived factor-1 (SDF-1)-CXCR4 signaling axis to promote primary tumorigenesis and hormone independence by overexpressing CXCR4 in MCF-7 cells, in this study we further examined the role of SDF-1/CXCR4 in the endogenously CXCR4-positive, estrogen receptor α (ER-α)-positive breast carcinoma cell line, MDA-MB-361. In addition to regulating estrogen-induced and hormone-independent tumor growth, CXCR4 signaling stimulated the epithelial-to-mesenchymal transition, evidenced by decreased CDH1 expression following SDF-1 treatment. Furthermore, inhibition of CXCR4 with the small molecule inhibitor AMD3100 induced CDH1 gene expression and inhibited CDH2 gene expression in MDA-MB-361 cells. Further, exogenous SDF-1 treatment induced ER-α-phosphorylation in both MDA-MB-361 and MCF-7-CXCR4 cells, demonstrating ligand-independent activation of ER-α through CXCR4 crosstalk. qPCR microRNA array analyses of the MDA-MB-361 and MCF-7-CXCR4 cell lines revealed changes in microRNA expression profiles induced by SDF-1, consistent with a more advanced disease phenotype and further supporting our hypothesis that the SDF-1/CXCR4 signaling axis drives ER-α-positive breast cancer cells to a hormone independent and more aggressive phenotype. In this first demonstration of SDF-1-CXCR4-induced microRNAs in breast cancer, we suggest that this signaling axis may promote tumorigenesis via microRNA regulation. These findings represent future potential therapeutic targets for the treatment of hormone-independent and endocrine-resistant breast cancer.
PMCID: PMC3334320  PMID: 21906588
SDF-1; CXCR4; microRNA; breast carcinoma; hormone independence; AMD3100
10.  The Organochlorine o,p’-DDT Plays a Role in Coactivator-Mediated MAPK Crosstalk in MCF-7 Breast Cancer Cells 
Environmental Health Perspectives  2012;120(9):1291-1296.
Background: The organochlorine dichlorodiphenyltrichloroethane (DDT), a known estrogen mimic and endocrine disruptor, has been linked to animal and human disorders. However, the detailed mechanism(s) by which DDT affects cellular physiology remains incompletely defined.
Objectives: We and others have shown that DDT activates cell-signaling cascades, culminating in the activation of estrogen receptor-dependent and -independent gene expression. Here, we identify a mechanism by which DDT alters cellular signaling and gene expression, independent of the estrogen receptor.
Methods: We performed quantitative polymerase chain reaction array analysis of gene expression in MCF-7 breast cancer cells using either estradiol (E2) or o,p´-DDT to identify distinct cellular gene expression responses. To elucidate the mechanisms by which DDT regulates cell signaling, we used molecular and pharmacological techniques.
Results: E2 and DDT treatment both altered the expression of many of the genes assayed, but up-regulation of vascular endothelial growth factor A (VEGFA) was observed only after DDT treatment, and this increase was not affected by the pure estrogen receptor α antagonist ICI 182780. Furthermore, DDT increased activation of the HIF-1 response element (HRE), a known enhancer of the VEGFA gene. This DDT-mediated increase in HRE activity was augmented by the coactivator CBP (CREB-binding protein) and was dependent on the p38 pathway.
Conclusions: DDT up-regulated the expression of several genes in MCF-7 breast cancer cells that were not altered by treatment with E2, including VEGFA. We propose that this DDT-initiated, ER-independent stimulation of gene expression is due to DDT’s ability to initiate crosstalk between MAPK (mitogen-activated protein kinase) signaling pathways and transcriptional coactivators.
PMCID: PMC3440107  PMID: 22609851
breast cancer; CBP; coactivator; crosstalk; DDT; dichlorodiphenyltrichloroethane; endocrine-disrupting chemical; HIF-1α; MAPK; organochlorine; p38 kinase; vascular endothelial growth factor
11.  Pharmacology and anti-tumor activity of RWJ67657, a novel inhibitor of p38 mitogen activated protein kinase 
Endocrine therapy resistance is a primary cause of clinical breast cancer treatment failure. The p38 mitogen activated protein kinase (MAPK) signaling pathway is known to promote ligand independent tumor growth and resistance to endocrine therapy. In this study, we investigated the therapeutic potential of the p38 inhibitor RWJ67657 in the treatment of tamoxifen resistant MDA-MB-361 cells. RWJ67657 dose-dependently decreased both basal and stimulated activation of p38 MAPK signaling in this drug resistant cell system. Decreased activation of p38 by RWJ67657 resulted in inhibition of the downstream p38 targets hsp27 and MAPKAPK. Diminished p38 signaling resulted in inhibition of p38-medated gene transcription. Furthermore, pharmacological inhibition of p38 by RWJ67657 decreased biological effects of p38, including ER-mediated gene expression and clonogenic survival in a dose-dependent manner. Animal studies revealed significantly decreased p38 signaling in vivo following exposure to RWJ67657. Treatment with the inhibitor markedly decreased phosphorylation of p38 in MDA-MB-361 tumors, leading to decreased transcription of both Fra-1 and progesterone receptor. Utilizing well-established xenograft tumor models, we demonstrated that RWJ67657 exhibits potent anti-tumor properties. Treatment with RWJ67657 markedly decreased tamoxifen resistant tumor growth, both in the presence and absence of estrogen. Taken together, our findings demonstrate the therapeutic potential of targeting the p38-MAPK signaling cascade in the treatment of endocrine resistant breast cancer.
PMCID: PMC3410584  PMID: 22860234
p38; mitogen-activated protein kinase; endocrine resistance; breast cancer; drug discovery; cancer biology; hormone independence; kinase inhibitors; estrogen receptor; gene transcription
12.  Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration 
Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam).
We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions.
Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility.
Our data demonstrate that the adaptive changes in the proteome of tamoxifen resistant breast cancer cells are characterized by down-regulated ER signaling, activation of alternative survival pathways, and enhanced cell motility through regulation of the actin cytoskeleton dynamics. Evidence also emerged that S100P mediates acquired tamoxifen resistance and migration capacity.
PMCID: PMC3446379  PMID: 22417809
13.  Endocrine Disruptor Regulation of MicroRNA Expression in Breast Carcinoma Cells 
PLoS ONE  2012;7(3):e32754.
Several environmental agents termed “endocrine disrupting compounds” or EDCs have been reported to bind and activate the estrogen receptor-α (ER). The EDCs DDT and BPA are ubiquitously present in the environment, and DDT and BPA levels in human blood and adipose tissue are detectable in most if not all women and men. ER-mediated biological responses can be regulated at numerous levels, including expression of coding RNAs (mRNAs) and more recently non-coding RNAs (ncRNAs). Of the ncRNAs, microRNAs have emerged as a target of estrogen signaling. Given the important implications of EDC-regulated ER function, we sought to define the effects of BPA and DDT on microRNA regulation and expression levels in estrogen-responsive human breast cancer cells.
Methodology/Principal Findings
To investigate the cellular effects of DDT and BPA, we used the human MCF-7 breast cancer cell line, which is ER (+) and hormone sensitive. Our results show that DDT and BPA potentiate ER transcriptional activity, resulting in an increased expression of receptor target genes, including progesterone receptor, bcl-2, and trefoil factor 1. Interestingly, a differential increase in expression of Jun and Fas by BPA but not DDT or estrogen was observed. In addition to ER responsive mRNAs, we investigated the ability of DDT and BPA to alter the miRNA profiles in MCF-7 cells. While the EDCs and estrogen similarly altered the expression of multiple microRNAs in MCF-7 cells, including miR-21, differential patterns of microRNA expression were induced by DDT and BPA compared to estrogen.
We have shown, for the first time, that BPA and DDT, two well known EDCs, alter the expression profiles of microRNA in MCF-7 breast cancer cells. A better understanding of the molecular mechanisms of these compounds could provide important insight into the role of EDCs in human disease, including breast cancer.
PMCID: PMC3293845  PMID: 22403704
14.  Cytokine Receptor CXCR4 Mediates Estrogen-Independent Tumorigenesis, Metastasis, and Resistance to Endocrine Therapy in Human Breast Cancer 
Cancer research  2010;71(2):603-613.
Estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer patients. Metastasis has been associated with chemokine signaling through the SDF-1–CXCR4 axis. Thus, the development of estrogen independence and endocrine therapy resistance in breast cancer patients may be driven by SDF-1–CXCR4 signaling. Here we report that CXCR4 overexpression is indeed correlated with worse prognosis and decreased patient survival irrespective of the status of the estrogen receptor (ER). Constitutive activation of CXCR4 in poorly metastatic MCF-7 cells led to enhanced tumor growth and metastases that could be reversed by CXCR4 inhibition. CXCR4 overexpression in MCF-7 cells promoted estrogen independence in vivo, whereas exogenous SDF-1 treatment negated the inhibitory effects of treatment with the anti-estrogen ICI 182,780 on CXCR4-mediated tumor growth. The effects of CXCR4 overexpression were correlated with SDF-1–mediated activation of downstream signaling via ERK1/2 and p38 MAPK (mitogen activated protein kinase) and with an enhancement of ER-mediated gene expression. Together, these results show that enhanced CXCR4 signaling is sufficient to drive ER-positive breast cancers to a metastatic and endocrine therapy-resistant phenotype via increased MAPK signaling. Our findings highlight CXCR4 signaling as a rational therapeutic target for the treatment of ER-positive, estrogen-independent breast carcinomas needing improved clinical management.
PMCID: PMC3140407  PMID: 21123450
15.  Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer 
Oncology Letters  2011;3(1):163-171.
The purpose of this study was to investigate the effects of glyceollins on the suppression of tumorigenesis in triple-negative breast carcinoma cell lines. We further explored the effects of glyceollins on microRNA and protein expression in MDA-MB-231 cells. Triple-negative (ER-, PgR- and Her2/neu-) breast carcinoma cells were used to test the effects of glyceollins on tumorigenesis in vivo. Following this procedure, unbiased microarray analysis of microRNA expression was performed. Additionally, we examined the changes in the proteome induced by glyceollins in the MDA-MB-231 cells. Tumorigenesis studies revealed a modest suppression of MDA-MB-231 and MDA-MB-468 cell tumor growth in vivo. In response to glyceollins we observed a distinct change in microRNA expression profiles and proteomes of the triple-negative breast carcinoma cell line, MDA-MB-231. Our results demonstrated that the glyceollins, previously described as anti-estrogenic agents, also exert antitumor activity in triple-negative breast carcinoma cell systems. This activity correlates with the glyceollin alteration of microRNA and proteomic expression profiles.
PMCID: PMC3362514  PMID: 22740874
triple-negative breast cancer; microRNA; tumorigenesis; glyceollins
16.  Organochlorine-mediated potentiation of the general coactivator p300 through p38 mitogen-activated protein kinase 
Carcinogenesis  2008;30(1):106-113.
The activity of nuclear transcription factors is often regulated by specific kinase-signaling pathways. We have previously shown that the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) stimulates activator protein-1 activity through the p38 mitogen-activated protein kinase (MAPK). Here, we show that DDT and its metabolites also stimulate the transcriptional activity of cyclic adenosine monophosphate response element-binding protein and Elk1 and potentiate gene expression through cyclic adenosine monophosphate and hypoxia response elements. Because DDT stimulates gene expression through various transcription factors and hence multiple response elements, we hypothesized that p38 signaling targets a common shared transcriptional activator. Here, we demonstrate using both pharmacological and molecular techniques, the general coactivator p300 is phosphorylated and potentiated by the p38 MAPK signaling cascade. We further show that p38 directly phosphorylates p300 in its N-terminus. These results, together with our previous work, suggest that p38 stimulates downstream transcription factors in part by targeting the general coactivator p300.
PMCID: PMC2639031  PMID: 18791200

Results 1-16 (16)