PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Benefits of hypoxic culture on bone marrow multipotent stromal cells 
Cultivation of cells is usually performed under atmospheric oxygen tension; however, such a condition does not replicate the hypoxic conditions of normal physiological or pathological status in the body. Recently, the effects of hypoxia on bone marrow multipotent stromal cells (MSCs) have been investigated. In a long-term culture, hypoxia can inhibit senescence, increase the proliferation rate and enhance differentiation potential along the different mesenchymal lineages. Hypoxia also modulates the paracrine effects of MSCs, causing upregulation of various secretable factors, including the vascular endothelial growth factor and interleukin-6, and thereby promoting wound healing and diabetic fracture healing. Finally, hypoxia plays an important role in mobilization and homing of MSCs, primarily by its ability to induce stromal cell-derived factor-1 expression along with its receptor, CXCR4. After transplantation, an ischemic environment, that is the combination of hypoxia and lack of nutrition, can lead to apoptosis or cell death, which can be overcome by the hypoxic preconditioning of MSCs and overexpression of prosurvival genes like Akt, HO-1 and Hsp70. This review emphasizes that hypoxia is an important factor in all major aspects of stem cell biology, and the mechanism involved in the hypoxic inducible factor-1signaling pathway behind these responses is also discussed.
PMCID: PMC3484415  PMID: 23119226
Mesenchymal stem cells; hypoxia; hypoxic preconditioning; proliferation; differentiation potential; apoptosis; migration; engraftment; HIF-1

Results 1-1 (1)