PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Resistin-Like Molecule-β Inhibits SGLT-1 Activity and Enhances GLUT2-Dependent Jejunal Glucose Transport 
Diabetes  2009;58(9):2032-2038.
OBJECTIVE
An increased expression of RELM-β (resistin-like molecule-β), a gut-derived hormone, is observed in animal models of insulin resistance/obesity and intestinal inflammation. Intestinal sugar absorption is modulated by dietary environment and hormones/cytokines. The aim of this study was to investigate the effect of RELM-β on intestinal glucose absorption.
RESEARCH DESIGN AND METHODS
Oral glucose tolerance test was performed in mice and rats in the presence and the absence of RELM-β. The RELM-β action on glucose transport in rat jejunal sacs, everted rings, and mucosal strips was explored as well as downstream kinases modulating SGLT-1 and GLUT2 glucose transporters.
RESULTS
Oral glucose tolerance test carried out in rodents showed that oral administration of RELM-β increased glycemia. Studies in rat jejunal tissue indicated that mucosal RELM-β promoted absorption of glucose from the gut lumen. RELM-β had no effect on paracellular mannitol transport, suggesting a transporter-mediated transcellular mechanism. In studies with jejunal mucosa mounted in Ussing chamber, luminal RELM-β inhibited SGLT-1 activity in line with a diminished SGLT-1 abundance in brush border membranes (BBMs). Further, the potentiating effect of RELM-β on jejunal glucose uptake was associated with an increased abundance of GLUT2 at BBMs. The effects of RELM-β were associated with an increased amount of protein kinase C βII in BBMs and an increased phosphorylation of AMP-activated protein kinase (AMPK).
CONCLUSIONS
The regulation of SGLT-1 and GLUT2 by RELM-β expands the role of gut hormones in short-term AMPK/protein kinase C mediated control of energy balance.
doi:10.2337/db08-1786
PMCID: PMC2731541  PMID: 19502416
2.  Phosphorylation of p47phox is required for receptor-mediated NADPH oxidase/NOX2 activation in Epstein-Barr virus-transformed human B lymphocytes 
The phagocyte NADPH oxidase (NOX2) is known to be expressed in Epstein-Barr virus (EBV)-transformed human B lymphocytes. Phosphorylation of the NOX2 cytosolic subunit p47phox is required for phorbol myristate acetate (PMA)-induced NOX2 activation in EBV-transformed B lymphocytes, however the role of this process in receptor-mediated NOX2 activation is not known. Here, we used pansorbin which acts by cross linking cell surface IgG and transfected cells with mutated p47phox to address if the phosphorylation of this subunit is required for receptor-mediated NOX2 activation. We show that pansorbin induced NOX2 activation in a time and concentration-dependent manner, albeit at levels only of 20% of those induced by PMA. GF109203X, a PKC selective inhibitor, inhibited pansorbin as well as PMA-induced NOX2 activation. Using specific anti-phospho serine antibodies we showed that pansorbin induced p47phox phosphorylation on Ser304, 315, 320, 328, and 345 and kinetics of these phosphorylations preceed NOX2 activation. To determine whether the phosphorylation of p47phox is required for pansorbin-induced NOX2 activation, we transfected EBV-transformed lymphocytes deficent in p47phox with a plasmid expressing wild type p47phox or p47phox with all the phosphorylated serines mutated to alanines, p47phoxS(303-379)A. Results show that pansorbin-induced NOX2 activation was greatly decreased in lymphocytes expressing the mutant as compared to the wild-type p47phox. These results show that pansorbin induced p47phox phosphorylation on multiple sites in EBV-transformed B lymphocytes and this process is required for pansorbin-induced NADPH oxidase activation in these cells.
PMCID: PMC3484414  PMID: 23119229
NADPH oxidase; NOX2; p47phox; B lymphocytes; pansorbin; ROS; phosphorylation
3.  Punicic Acid a Conjugated Linolenic Acid Inhibits TNFα-Induced Neutrophil Hyperactivation and Protects from Experimental Colon Inflammation in Rats 
PLoS ONE  2009;4(7):e6458.
Background
Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFα primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFα-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo.
Methodology and Principal Findings
We analyzed the effect of punicic acid on TNFα-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFα-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP)-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFα+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation.
Conclusions/Significance
These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFα-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.
doi:10.1371/journal.pone.0006458
PMCID: PMC2714468  PMID: 19649246
4.  p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases 
Experimental & Molecular Medicine  2009;41(4):217-225.
Phagocytes such as neutrophils play a vital role in host defense against microbial pathogens. The anti-microbial function of neutrophils is based on the production of superoxide anion (O2•-), which generates other microbicidal reactive oxygen species (ROS) and release of antimicrobial peptides and proteins. The enzyme responsible for O2•- production is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two transmembrane proteins (p22phox and gp91phox, also called NOX2, which together form the cytochrome b558) and four cytosolic proteins (p47phox, p67phox, p40phox and a GTPase Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate agents. This process is dependent on the phosphorylation of the cytosolic protein p47phox. p47phox is a 390 amino acids protein with several functional domains: one phox homology (PX) domain, two src homology 3 (SH3) domains, an auto-inhibitory region (AIR), a proline rich domain (PRR) and has several phosphorylated sites located between Ser303 and Ser379. In this review, we will describe the structure of p47phox, its phosphorylation and discuss how these events regulate NADPH oxidase activation.
doi:10.3858/emm.2009.41.4.058
PMCID: PMC2679237  PMID: 19372727
CYBB protein, human; NADPH oxidase; neutrophil cytosolic factor 1; neutrophils; phosphorylation; reactive oxygen species; review
5.  NAD(P)H Oxidase Nox-4 Mediates 7-Ketocholesterol-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Aortic Smooth Muscle Cells 
Molecular and Cellular Biology  2004;24(24):10703-10717.
The mechanisms involved in the cytotoxic action of oxysterols in the pathogenesis of atherosclerosis still remain poorly understood. Among the major oxysterols present in oxidized low-density lipoprotein, we show here that 7-ketocholesterol (7-Kchol) induces oxidative stress and/or apoptotic events in human aortic smooth muscle cells (SMCs). This specific effect of 7-Kchol is mediated by a robust upregulation (threefold from the basal level) of Nox-4, a reactive oxygen species (ROS)-generating NAD(P)H oxidase homologue. This effect was highlighted by silencing Nox-4 expression with a specific small interfering RNA, which significantly reduced the 7-Kchol-induced production of ROS and abolished apoptotic events. Furthermore, the 7-Kchol activating pathway included an early triggering of endoplasmic reticulum stress, as assessed by transient intracellular Ca2+ oscillations, and the induction of the expression of the cell death effector CHOP and of GRP78/Bip chaperone via the activation of IRE-1, all hallmarks of the unfolded protein response (UPR). We also showed that 7-Kchol activated the IRE-1/Jun-NH2-terminal kinase (JNK)/AP-1 signaling pathway to promote Nox-4 expression. Silencing of IRE-1 and JNK inhibition downregulated Nox-4 expression and subsequently prevented the UPR-dependent cell death induced by 7-Kchol. These findings demonstrate that Nox-4 plays a key role in 7-Kchol-induced SMC death, which is consistent with the hypothesis that Nox-4/oxysterols are involved in the pathogenesis of atherosclerosis.
doi:10.1128/MCB.24.24.10703-10717.2004
PMCID: PMC533993  PMID: 15572675

Results 1-5 (5)