Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Benefits of hypoxic culture on bone marrow multipotent stromal cells 
Cultivation of cells is usually performed under atmospheric oxygen tension; however, such a condition does not replicate the hypoxic conditions of normal physiological or pathological status in the body. Recently, the effects of hypoxia on bone marrow multipotent stromal cells (MSCs) have been investigated. In a long-term culture, hypoxia can inhibit senescence, increase the proliferation rate and enhance differentiation potential along the different mesenchymal lineages. Hypoxia also modulates the paracrine effects of MSCs, causing upregulation of various secretable factors, including the vascular endothelial growth factor and interleukin-6, and thereby promoting wound healing and diabetic fracture healing. Finally, hypoxia plays an important role in mobilization and homing of MSCs, primarily by its ability to induce stromal cell-derived factor-1 expression along with its receptor, CXCR4. After transplantation, an ischemic environment, that is the combination of hypoxia and lack of nutrition, can lead to apoptosis or cell death, which can be overcome by the hypoxic preconditioning of MSCs and overexpression of prosurvival genes like Akt, HO-1 and Hsp70. This review emphasizes that hypoxia is an important factor in all major aspects of stem cell biology, and the mechanism involved in the hypoxic inducible factor-1signaling pathway behind these responses is also discussed.
PMCID: PMC3484415  PMID: 23119226
Mesenchymal stem cells; hypoxia; hypoxic preconditioning; proliferation; differentiation potential; apoptosis; migration; engraftment; HIF-1
2.  Functional roles of pluripotency transcription factors in mesenchymal stem cells 
Cell Cycle  2012;11(20):3711-3712.
PMCID: PMC3495805  PMID: 22951581
mesenchymal stem cells; pluripotency transcription factor; Oct4; Nanog; Dnmt1; self-renewal; proliferation; spontaneous differentiation
3.  Involvement of Notch1 inhibition in serum-stimulated glia and oligodendrocyte differentiation from human mesenchymal stem cells 
The use of in vitro oligodendrocyte differentiation for transplantation of stem cells to treat demyelinating diseases is an important consideration. In this study, we investigated the effects of serum on glia and oligodendrocyte differentiation from human mesenchymal stem cells (KP-hMSCs). We found that serum deprivation resulted in a reversible downregulation of glial- and oligodendrocyte-specific markers. Serum stimulated expression of oligodendrocyte markers, such as galactocerebroside, as well as Notch1 and JAK1 transcripts. Inhibition of Notch1 activation by the Notch inhibitor, MG132, led to enhanced expression of a serum-stimulated oligodendrocyte marker. This marker was undetectable in serum-deprived KP-hMSCs treated with MG132, suggesting that inhibition of Notch1 function is additive to serum-stimulated oligodendrocyte differentiation. Furthermore, a dominant-negative mutant RBP-J protein also inhibited Notch1 function and led to upregulation of oligodendrocyte-specific markers. Our results demonstrate that serum-stimulated oligodendrocyte differentiation is enhanced by the inhibition of Notch1-associated functions.
PMCID: PMC3781741  PMID: 24198522
mesenchymal stem cells; glia and oligodendrocyte differentiation; Notch1 signaling; serum deprivation
4.  Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells 
Autophagy  2014;10(7):1179-1192.
Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported. In this study, CSCs were isolated from colorectal cancer cells using PROM1/CD133 (prominin 1) expression, which is a surface marker commonly found on stem cells of various tissues. We demonstrated that PpIX-mediated PDT induced the formation of autophagosomes in PROM1/CD133+ cells, accompanied by the upregulation of autophagy-related proteins ATG3, ATG5, ATG7, and ATG12. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of the ATG5 gene substantially triggered apoptosis of PROM1/CD133+ cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. In conclusion, our results revealed a protective role played by autophagy against PDT in CSCs and indicated that targeting autophagy could be used to elevate the PDT sensitivity of CSCs. These findings would aid in the development of novel therapeutic approaches for CSC treatment.
PMCID: PMC4203546  PMID: 24905352
apoptosis; autophagy; autophagy-related proteins; cancer stem-like cells; colonosphere; colorectal cancer; photodynamic therapy; prominin 1 (PROM1)/CD133; tumorigenicity
5.  RB Maintains Quiescence and Prevents Premature Senescence through Upregulation of DNMT1 in Mesenchymal Stromal Cells 
Stem Cell Reports  2014;3(6):975-986.
Many cell therapies currently being tested are based on mesenchymal stromal cells (MSCs). However, MSCs start to enter the senescent state upon long-term expansion. The role of retinoblastoma (RB) protein in regulating MSC properties is not well studied. Here, we show that RB levels are higher in early-passage MSCs compared with late-passage MSCs. RB knockdown induces premature senescence and reduced differentiation potentials in early-passage MSCs. RB overexpression inhibits senescence and increases differentiation potentials in late-passage MSCs. Expression of DNMT1, but not DNMT3A or DNMT3B, is also higher in early-passage MSCs than in late-passage MSCs. Furthermore, DNMT1 knockdown in early-passage MSCs induces senescence and reduces differentiation potentials, whereas DNMT1 overexpression in late-passage MSCs has the opposite effect. These results demonstrate that RB expressed in early-passage MSCs upregulates DNMT1 expression and inhibits senescence in MSCs. Therefore, genetic modification of RB could be a way to improve the efficiency of MSCs in clinical use.
Graphical Abstract
•RB levels are higher in early-passage MSCs than in late-passage MSCs•RB knockdown induces a premature senescence and reduces differentiation potentials•RB overexpression reverses senescence and increases differentiation potentials•RB upregulates DNMT1 to inhibit senescence and promote differentiation potentials
In this article, Hung, Kao, and colleagues show that retinoblastoma (RB) levels are higher in early-passage mesenchymal stromal cells (MSCs) than in late-passage MSCs, which serves to regulate senescence and differentiation potentials. Expression of DNMT1 is also higher in early-passage MSCs than in late-passage MSCs. This study demonstrates that RB expressed in early-passage MSCs upregulates DNMT1 expression and inhibits senescence in MSCs.
PMCID: PMC4264040  PMID: 25455074
6.  Manipulation Therapy Prior to Diagnosis Induced Primary Osteosarcoma Metastasis—From Clinical to Basic Research 
PLoS ONE  2014;9(5):e96571.
Osteosarcoma (OS) patients who suffer manipulation therapy (MT) prior to diagnosis resulted in poor prognosis with increasing metastasis or recurrence rate. The aim of the study is to establish an in vivo model to identify the effects of MT on OS. The enrolled 235 OS patients were followed up in this study. In vivo nude mice model with tibia injection of GFP-labeled human OS cells were randomly allocated into MT(+) that with repeated massage on tumor site twice a week and no treatment as MT(−) group. The five-year survival, metastasis and recurrence rates were recorded in clinical subjects. X-ray plainfilm, micro-PET/CT scan, histopathology, serum metalloproteinase 2 (MMP2), metalloproteinase 9 (MMP9) level and human kinase domain insert receptor (KDR) pattern were assayed in mice model. The results showed that patient with MT decreased 5-year survival and higher recurrence or metastasis rate. Compatible with clinical findings, the decreased body weight (30.5±0.65 g) and an increased tumor volume (8.3±1.18 mm3) in MT(+) mice were observed. The increasing signal intensity over lymph node region of hind limb by micro-PET/CT and the tumor cells were detected in lung and bilateral lymph nodes only in MT(+) group. MMP2 (214±9.8 ng/ml) and MMP9 (25.5±1.81 ng/ml) were higher in MT(+) group than in MT(−) group (165±7.8 ng/ml and 16.9±1.40 ng/ml, individually) as well as KDR expression. Taking clinical observations and in vivo evidence together, MT treatment leads to poor prognosis of primary osteosarcoma; physicians should pay more attention on patients who seek MT before diagnosis.
PMCID: PMC4013034  PMID: 24804772
7.  Cytotoxic effects of 15d-PGJ2 against osteosarcoma through ROS-mediated AKT and cell cycle inhibition 
Oncotarget  2014;5(3):716-725.
Polo-like kinase 1 (PLK1), a critical cell cycle regulator, has been identified as a potential target in osteosarcoma (OS). 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2), a prostaglandin derivative, has shown its anti-tumor activity by inducing apoptosis through reactive oxygen species (ROS)-mediated inactivation of v-akt, a murine thymoma viral oncogene homolog, (AKT) in cancer cells. In the study analyzing its effects on arthritis, 15d-PGJ2 mediated shear-induced chondrocyte apoptosis via protein kinase A (PKA)-dependent regulation of PLK1. In this study, the cytotoxic effect and mechanism underlying 15d-PGJ2 effects against OS were explored using OS cell lines. 15d-PGJ2 induced significant G2/M arrest, and exerted time- and dose-dependent cytotoxic effects against all OS cell lines. Western blot analysis showed that both AKT and PKA-PLK1 were down-regulated in OS cell lines after treatment with 15d-PGJ2. In addition, transfection of constitutively active AKT or PLK1 partially rescued cells from 15d-PGJ2-induced apoptosis, suggesting crucial roles for both pathways in the anti-cancer effects of 15d-PGJ2. Moreover, ROS generation was found treatment with 15d-PGJ2, and its cytotoxic effect could be reversed with N-acetyl-l-cysteine. Furthermore, inhibition of JNK partially rescued 15d-PGJ2 cytotoxicity. Thus, ROS-mediated JNK activation may contribute to apoptosis through down-regulation of the p-Akt and PKA-PLK1 pathways. 15d-PGJ2 is a potential therapeutic agent for OS, exerting cytotoxicity mediated through both AKT and PKA-PLK1 inhibition, and these results form the basis for further analysis of its role in animal studies and clinical applications.
PMCID: PMC3996657  PMID: 24566468
15d-PGJ2; AKT; PLK1; osteosarcoma
8.  Downregulation of DAB2IP Promotes Mesenchymal-To-Neuroepithelial Transition and Neuronal Differentiation of Human Mesenchymal Stem Cells 
PLoS ONE  2013;8(9):e75884.
The DOC-2/DAB2 interactive protein (DAB2IP) is a new member of the Ras GTPase–activating protein family. Recent studies have shown that, in addition to its tumor suppressive role in various tumors, DAB2IP also plays an important role in regulating neuronal migration and positioning during brain development. In this study, we determined the roles of DAB2IP in the neuronal differentiation of human mesenchymal stem cells (hMSCs). We found that lentiviral short hairpin RNA (shRNA)-mediated knockdown of DAB2IP promoted the mesenchymal-to-neuroepithelial stem cell transition (MtNeST) and neuronal differentiation, which were accompanied by a reduction of cell proliferation but not apoptosis or cellular senescence. This suggests that DAB2IP plays an important role in the neuronal induction of hMSCs. Moreover, our finding that reduction of glycogen synthase kinase 3 beta (GSK3β) activity upon LiCl pretreatment inhibited both the MtNeST and production of MAP2-positive cells upon DAB2IP knockdown suggests that this transition is most likely mediated by regulation of the GSK3β signaling pathway. Our study demonstrates that DAB2IP participates in the first step of neuron induction of hMSCs, which implies a potentially important role for DAB2IP in the MtNeST during neurogenesis.
PMCID: PMC3779184  PMID: 24073285
9.  Hypoxia Enhances Chondrogenesis and Prevents Terminal Differentiation through PI3K/Akt/FoxO Dependent Anti-Apoptotic Effect 
Scientific Reports  2013;3:2683.
Hypoxia, a common environmental condition, influences cell signals and functions. Here, we compared the effects of hypoxia (1% oxygen) and normoxia (air) on chondrogenic differentiation of human mesenchymal stem cells (MSCs). For in vitro chondrogenic differentiation, MSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis and endochondral ossification. MSCs induced for differentiation under hypoxia increased in chondrogenesis, but decreased in endochondral ossification compared to those under normoxia. MSCs induced for differentiation were more resistant to apoptosis under hypoxia compared to those under normoxia. The hypoxia-dependent protection of MSCs from chondrogenesis-induced apoptosis correlated with an increase in the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO pathway. These results suggest that the PI3K/Akt/FoxO survival pathway activated by hypoxia in MSCs enhances chondrogenesis and plays an important role in preventing endochondral ossification.
PMCID: PMC3775095  PMID: 24042188
10.  Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke 
EMBO Molecular Medicine  2013;5(4):531-547.
EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. Previously, we showed that EZH2 downregulation enhances neuron differentiation of human mesenchymal stem cells (hMSCs); however, the underlying mechanisms of EZH2-regulated neuron differentiation are still unclear. Here, we identify Smurf2 as the E3 ubiquitin ligase responsible for the polyubiquitination and proteasome-mediated degradation of EZH2, which is required for neuron differentiation. A ChIP-on-chip screen combined with gene microarray analysis revealed that PPARγ was the only gene involved in neuron differentiation with significant changes in both its modification and expression status during differentiation. Moreover, knocking down PPARγ prevented cells from undergoing efficient neuron differentiation. In animal model, rats implanted with intracerebral EZH2-knocked-down hMSCs or hMSCs plus treatment with PPARγ agonist (rosiglitazone) showed better improvement than those without EZH2 knockdown or rosiglitazone treatment after a stroke. Together, our results support Smurf2 as a regulator of EZH2 turnover to facilitate PPARγ expression, which is specifically required for neuron differentiation, providing a molecular mechanism for clinical applications in the neurodegenerative diseases.
PMCID: PMC3628108  PMID: 23526793
EZH2; human mesenchymal stem cells (hMSCs); ischaemic neuronal injury; neuron differentiation; Smurf2
11.  Survival of Cancer Stem Cells under Hypoxia and Serum Depletion via Decrease in PP2A Activity and Activation of p38-MAPKAPK2-Hsp27 
PLoS ONE  2012;7(11):e49605.
Hypoxia and serum depletion are common features of solid tumors that occur upon antiangiogenesis, irradiation and chemotherapy across a wide variety of malignancies. Here we show that tumor cells expressing CD133, a marker for colorectal cancer initiating or stem cells, are enriched and survive under hypoxia and serum depletion conditions, whereas CD133− cells undergo apoptosis. CD133+ tumor cells increase cancer stem cell and epithelial-mesenchymal transition properties. Moreover, via screening a panel of tyrosine and serine/threonine kinase pathways, we identified Hsp27 is constitutively activated in CD133+ cells rather than CD133− cell under hypoxia and serum depletion conditions. However, there was no difference in Hsp27 activation between CD133+ and CD133− cells under normal growth condition. Hsp27 activation, which was mediated by the p38MAPK-MAPKAPK2-Hsp27 pathway, is required for CD133+ cells to inhibit caspase 9 and 3 cleavage. In addition, inhibition of Hsp27 signaling sensitizes CD133+ cells to hypoxia and serum depletion -induced apoptosis. Moreover, the antiapoptotic pathway is also activated in spheroid culture-enriched CD133+ cancer stem cells from a variety of solid tumor cells including lung, brain and oral cancer, suggesting it is a common pathway activated in cancer stem cells from multiple tumor types. Thus, activation of PP2A or inactivation of the p38MAPK-MAPKAPK2-Hsp27 pathway may develop new strategies for cancer therapy by suppression of their TIC population.
PMCID: PMC3502468  PMID: 23185379
12.  Manipulation under anaesthesia for frozen shoulder in patients with and without non-insulin dependent diabetes mellitus 
International Orthopaedics  2010;34(8):1227-1232.
Manipulation under anaesthesia (MUA) has been used to speed up recovery. However, the outcome of frozen shoulder after MUA in patients with diabetes has not been well documented in the past. A higher prevalence of frozen shoulder has been reported in diabetes mellitus (DM) patients. In this study, we revealed the short- and long-term outcomes for treatment of frozen shoulders by MUA and compared these results in patients with and without non-insulin dependent DM by adjusted Constant score. The scores showed no significant differences between the two groups at both early and late follow-ups. Our results revealed that MUA for frozen shoulders is a simple and noninvasive procedure to improve symptoms and shoulder function within a short period of time. Even though DM is a predisposing factor to frozen shoulder, non-insulin dependent DM alone does not influence both the short- and long-term outcomes of frozen shoulder.
PMCID: PMC2989069  PMID: 20157810
13.  Twist Controls Skeletal Development and Dorsoventral Patterning by Regulating Runx2 in Zebrafish 
PLoS ONE  2011;6(11):e27324.
Twist1a and twist1b are the principal components of twists that negatively regulate a number of cellular signaling events. Expression of runx2 and downstream targets is essential for skeletal development and ventral organizer formation and specification in early vertebrate embryos, but what controls ventral activity of maternal runx2 and how twists function in zebrafish embryogenesis still remain unclear.
Methodology/Principal Findings
By studying the loss of twist induced by injection of morpholino-oligonucleotide in zebrafish, we found that twist1a and twist1b, but not twist2 or twist3, were required for proper skeletal development and dorsoventral patterning in early embryos. Overexpression of twist1a or twist1b following mRNA injection resulted in deteriorated skeletal development and formation of typical dorsalized embryos, whereas knockdown of twist1a and twist1b led to the formation of abnormal embryos with enhanced skeletal formation and typical ventralized patterning. Overexpression of twist1a or twist1b decreased the expression of runx2b, whereas twist1a and twist1b knockdown increased runx2b expression. We have further demonstrated that phenotypes induced by twist1a and twist1b knockdown were rescued by runx2b knockdown.
Together, these results suggest that twist1a and twist1b control skeletal development and dorsoventral patterning by regulating runx2b in zebrafish and provide potential targets for the treatment of diseases or syndromes associated with decreased skeletal development.
PMCID: PMC3210159  PMID: 22087291
14.  Hypoxia Inhibits Osteogenesis in Human Mesenchymal Stem Cells through Direct Regulation of RUNX2 by TWIST 
PLoS ONE  2011;6(9):e23965.
Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation.
Methodology/Principle Findings
Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs.
Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.
PMCID: PMC3170288  PMID: 21931630
15.  Recapitulation of Fibromatosis Nodule by Multipotential Stem Cells in Immunodeficient Mice 
PLoS ONE  2011;6(8):e24050.
Musculoskeletal fibromatosis remains a disease of unknown etiology. Surgical excision is the standard of care, but the recurrence rate remains high. Superficial fibromatosis typically presents as subcutaneous nodules caused by rapid myofibroblast proliferation followed by slow involution to dense acellular fibrosis. In this study, we demonstrate that fibromatosis stem cells (FSCs) can be isolated from palmar nodules but not from cord or normal palm tissues. We found that FSCs express surface markers such as CD29, CD44, CD73, CD90, CD105, and CD166 but do not express CD34, CD45, or CD133. We also found that FSCs are capable of expanding up to 20 passages, that these cells include myofibroblasts, osteoblasts, adipocytes, chondrocytes, hepatocytes, and neural cells, and that these cells possess multipotentiality to develop into the three germ layer cells. When implanted beneath the dorsal skin of nude mice, FSCs recapitulated human fibromatosis nodules. Two weeks after implantation, the cells expressed immunodiagnostic markers for myofibroblasts such as α-smooth muscle actin and type III collagen. Two months after implantation, there were fewer myofibroblasts and type I collagen became evident. Treatment with the antifibrogenic compound Trichostatin A (TSA) inhibited the proliferation and differentiation of FSCs in vitro. Treatment with TSA before or after implantation blocked formation of fibromatosis nodules. These results suggest that FSCs are the cellular origin of fibromatosis and that these cells may provide a promising model for developing new therapeutic interventions.
PMCID: PMC3162023  PMID: 21901157
16.  Effects of Combinatorial Treatment with Pituitary Adenylate Cyclase Activating Peptide and Human Mesenchymal Stem Cells on Spinal Cord Tissue Repair 
PLoS ONE  2010;5(12):e15299.
The aim of this study is to understand if human mesenchymal stem cells (hMSCs) and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI). To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD) and peroxiredoxin-1/6 (Prx-1 and Prx-6), were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue.
PMCID: PMC3004866  PMID: 21187959
17.  Bmi-1 Regulates Snail Expression and Promotes Metastasis Ability in Head and Neck Squamous Cancer-Derived ALDH1 Positive Cells 
Journal of Oncology  2010;2011:609259.
Recent studies suggest that ALDH1 is a putative marker for HNSCC-derived cancer stem cells. However, the regulation mechanisms that maintain the stemness and metastatic capability of HNSCC-ALDH1+ cells remain unclear. Initially, HNSCC-ALDH1+ cells from HNSCC patient showed cancer stemness properties, and high expression of Bmi1 and Snail. Functionally, tumorigenic properties of HNSCC-ALDH1+ cells could be downregulated by knockdown of Bmi-1. Overexpression of Bmi-1 altered in expression property ALDH1− cells to that of ALDH1+ cells. Furthermore, knockdown of Bmi-1 enhanced the radiosensitivity of radiation-treated HNSCC-ALDH1+ cells. Moreover, overexpression of Bmi-1 in HNSCC-ALDH1− cells increased tumor volume and number of pulmonary metastatic lesions by xenotransplant assay. Importantly, knock-down of Bmi1 in HNSCC-ALDH1+ cells significantly decreased distant metastases in the lungs. Clinically, coexpression of Bmi-1/Snail/ALDH1 predicted the worst prognosis in HNSCC patients. Collectively, our data suggested that Bmi-1 plays a key role in regulating Snail expression and cancer stemness properties of HNSCC-ALDH1+ cells.
PMCID: PMC2948925  PMID: 20936121
18.  Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines 
To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders.
PMCID: PMC2923118  PMID: 20670406
19.  Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK 
Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs) offer renewable cells for generating insulin-producing cells (IPCs).
We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation.
Here, we report adding extracellular matrix proteins (ECM) such as fibronectin (FN) or laminin (LAM) enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor), PD98059 (MEK specific inhibitor) or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM.
These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.
PMCID: PMC2915967  PMID: 20624296
20.  Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells 
PLoS ONE  2008;3(7):e2637.
CD133 (prominin-1), a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133+) and CD133-negative cells (LC-CD133−) from tissue samples of ten patients with non-small cell lung cancer (LC) and five LC cell lines. LC-CD133+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133+, unlike LC-CD133−, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel) and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133+ to form spheres and can further facilitate LC-CD133+ to differentiate into LC-CD133−. In addition, knock-down of Oct-4 expression in LC-CD133+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose) polymerase (PARP). Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133+ and malignant lung cancer.
PMCID: PMC2440807  PMID: 18612434
21.  Comparison of idiopathic, post-trauma and post-surgery frozen shoulder after manipulation under anesthesia 
International Orthopaedics  2006;31(3):333-337.
Manipulation under anesthesia (MUA) has been used to speed up the recovery of frozen shoulder, which is said to be a self-limiting process. We would like to elucidate the short- and long-term results of the treatment of frozen shoulders by manipulation under anesthesia and compare the results of idiopathic, post-trauma and post-surgery frozen shoulders. We applied an adjusted Constant score (Constant score after excluding the 25 points allocated for the assessment of muscle strength) to assess all patients. In our series, 47 cases with 51 frozen shoulders were collected and evaluated retrospectively. The adjusted Constant score at pre-manipulation was on average 22.8±4.9 (10–31) points. The score from the 3-week follow-up was 52.6±9.2 (31–67) points on average. The score from the averaged 82-month follow-up was on average 70.1±6.2 (54–75) points, with 23 shoulders scored for a maximum point number of 75. The score at the early and late follow-ups was significantly lower for the post-surgery group (63.2±6.7) when compared to the other two groups (P<0.001). Our results revealed that manipulation under anestheia is a very simple and noninvasive procedure for shortening the course of an apparently self-limiting disease and can improve shoulder function and symptoms within a short period of time. However, we found less improvement in post-surgery frozen shoulders, especially in residual pain and limited range of motion (ROM), which may be influenced by the initial injury or initial surgery. Although less improvement in pain and ROM was noted, manipulation is still a good and simple way to treat post-surgery frozen shoulders.
PMCID: PMC2267597  PMID: 16927088
22.  Identification of CD133-Positive Radioresistant Cells in Atypical Teratoid/ Rhabdoid Tumor 
PLoS ONE  2008;3(5):e2090.
Atypical teratoid/rhabdoid tumor (AT/RT) is an extremely malignant neoplasm in the central nervous system (CNS) which occurs in infancy and childhood. Recent studies suggested that CD133 could be considered a marker for brain cancer stem-like cells (CSCs). However, the role of CD133 in AT/RT has never been investigated. Herein we report the isolation of CD133-positive cells (CD133+), found to have the potential to differentiate into three germ layer tissues, from tissues of nine AT/RT patients. The migration/invasion/malignancy and radioresistant capabilities of CD133+ were significantly augmented when compared to CD133−. The clinical data showed that the amount of CD133+ in AT/RTs correlated positively with the degree of resistance to radiation therapy. Using cDNA microarray analysis, the genotoxic–response profiles of CD133+ and CD133− irradiated with 10 Gy ionizing radiation (IR) were analyzed 0.5, 2, 6, 12 and 24 h post-IR. We then validated these microarray data and showed increased phosphorylation after IR of p-ATM, p-RAD17, and p-CHX2 as well as increased expression of BCL-2 protein in CD133+ compared to CD133−. Furthermore, we found that CD133+ can effectively resist IR with cisplatin- and/or TRAIL-induced apoptosis. Immunohistochemical analysis confirmed the up-regulated expression of p-ATM and BCL-2 proteins in IR-treated CD133+ xenotransgrafts in SCID mice but not in IR-treated CD133−. Importantly, the effect of IR in CD133+ transplanted mice can be significantly improved by a combination of BCL-2 siRNA with debromohymenialdisine, an inhibitor of checkpoint kinases. In sum, this is the first report indicating that CD133+ AT/RT cells demonstrate the characteristics of CSCs. The IR-resistant and anti-apoptotic properties in CD133+ may reflect the clinical refractory malignancy of AT/RTs and thus the activated p-ATM pathway and BCL-2 expression in CD133+ could be possible targets to improve future treatment of deadly diseases like AT/RT.
PMCID: PMC2396792  PMID: 18509505
23.  cAMP/PKA Regulates Osteogenesis, Adipogenesis and Ratio of RANKL/OPG mRNA Expression in Mesenchymal Stem Cells by Suppressing Leptin 
PLoS ONE  2008;3(2):e1540.
Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown.
Methods and Findings
We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhances adipogenesis, the gene expression of PPARγ2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-κB Ligand to Osteoprotegerin (RANKL/OPG) gene expression – the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish.
Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression.
PMCID: PMC2212109  PMID: 18253488
24.  Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo 
PLoS ONE  2007;2(5):e416.
The ability of stem/progenitor cells to migrate and engraft into host tissues is key to their potential use in gene and cell therapy. Among the cells of interest are the adherent cells from bone marrow, referred to as mesenchymal stem cells or multipotent stromal cells (MSC). Since the bone marrow environment is hypoxic, with oxygen tensions ranging from 1% to 7%, we decided to test whether hypoxia can upregulate chemokine receptors and enhance the ability of human MSCs to engraft in vivo. Short-term exposure of MSCs to 1% oxygen increased expression of the chemokine receptors CX3CR1and CXCR4, both as mRNA and as protein. After 1-day exposure to low oxygen, MSCs increased in vitro migration in response to the fractalkine and SDF-1α in a dose dependent manner. Blocking antibodies for the chemokine receptors significantly decreased the migration. Xenotypic grafting into early chick embryos demonstrated cells from hypoxic cultures engrafted more efficiently than cells from normoxic cultures and generated a variety of cell types in host tissues. The results suggest that short-term culture of MSCs under hypoxic conditions may provide a general method of enhancing their engraftment in vivo into a variety of tissues.
PMCID: PMC1855077  PMID: 17476338

Results 1-24 (24)