PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
2.  Sorafenib Inhibits Lymphoma Xenografts by Targeting MAPK/ERK and AKT Pathways in Tumor and Vascular Cells 
PLoS ONE  2013;8(4):e61603.
The anti-lymphoma activity and mechanism(s) of action of the multikinase inhibitor sorafenib were investigated using a panel of lymphoma cell lines, including SU-DHL-4V, Granta-519, HD-MyZ, and KMS-11 cell lines. In vitro, sorafenib significantly decreased cell proliferation and phosphorylation levels of MAPK and PI3K/Akt pathways while increased apoptotic cell death. In vivo, sorafenib treatment resulted in a cytostatic rather than cytotoxic effect on tumor cell growth associated with a limited inhibition of tumor volumes. However, sorafenib induced an average 50% reduction of tumor vessel density and a 2-fold increase of necrotic areas. Upon sorafenib treatment, endothelial and tumor cells from SU-DHL-4V, Granta-519, and KMS-11 nodules showed a potent inhibition of either phospho-ERK or phospho-AKT, whereas a concomitant inhibition of phospho-ERK and phospho-AKT was only observed in HD-MyZ nodules. In conclusion, sorafenib affects the growth of lymphoid cell lines by triggering antiangiogenic mechanism(s) and directly targeting tumor cells.
doi:10.1371/journal.pone.0061603
PMCID: PMC3631141  PMID: 23620775
3.  Detection of minimal residual disease in hematopoietic progenitor cell harvests: lack of predictive value of peripheral blood and bone marrow analysis in mantle cell and indolent lymphoma 
Elimination of neoplastic cells from peripheral blood progenitor cells (PBPCs) is an important issue in transplantation-based high-dose chemotherapy in non Hodgkin’s lymphoma (NHL). The capacity to reliably assess the presence of residual lymphoma cells in PBPCs is mandatory in designing this type of protocols. Polymerase chain reaction (PCR) amplification of molecular rearrangements is widely used to detect minimal residual disease (MRD) in NHL patients. Although concordant data can be obtained in most of the cases from peripheral blood (PB) and bone marrow (BM) at diagnosis, the relationship between these two compartments and the role of their analysis in predicting the molecular status of PBPCs is still an open issue. Here we report data about MRD analysis in BM, PB and PBPCs in a series of mantle cell and indolent NHL patients who underwent high-dose chemotherapy: discordant results were obtained comparing PB, BM and PBPC molecular data. In addition, differences were noted among these results if molecular analysis was performed using well-known rearrangements (i.e., bcl-1/IgH and bcl-2/IgH) or patient specific oligonucleotides. We conclude that neither BM nor PB are reliable in predicting the molecular status of PBPCs and that caution must be adopted in interpreting molecular data obtained using patient specific oligonucleotides.
PMCID: PMC3384403  PMID: 22762029
Minimal residual disease; peripheral blood; bone marrow; peripheral blood progenitor cells

Results 1-3 (3)