PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Adaptor protein-3 is required in dendritic cells for optimal Toll-like receptor signaling from phagosomes and antigen presentation to CD4+ T cells 
Immunity  2012;36(5):782-794.
SUMMARY
Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4+ T cell activation and Th1 effector function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores.
doi:10.1016/j.immuni.2012.02.018
PMCID: PMC3361531  PMID: 22560444
major histocompatibility complex molecules; MHC-I; MHC-II; toll-like receptors; TLR4; adaptor protein-3; Hermansky-Pudlak syndrome; phagocytosis; dendritic cell maturation; Ag processing
2.  Phosphorylation of p47phox is required for receptor-mediated NADPH oxidase/NOX2 activation in Epstein-Barr virus-transformed human B lymphocytes 
The phagocyte NADPH oxidase (NOX2) is known to be expressed in Epstein-Barr virus (EBV)-transformed human B lymphocytes. Phosphorylation of the NOX2 cytosolic subunit p47phox is required for phorbol myristate acetate (PMA)-induced NOX2 activation in EBV-transformed B lymphocytes, however the role of this process in receptor-mediated NOX2 activation is not known. Here, we used pansorbin which acts by cross linking cell surface IgG and transfected cells with mutated p47phox to address if the phosphorylation of this subunit is required for receptor-mediated NOX2 activation. We show that pansorbin induced NOX2 activation in a time and concentration-dependent manner, albeit at levels only of 20% of those induced by PMA. GF109203X, a PKC selective inhibitor, inhibited pansorbin as well as PMA-induced NOX2 activation. Using specific anti-phospho serine antibodies we showed that pansorbin induced p47phox phosphorylation on Ser304, 315, 320, 328, and 345 and kinetics of these phosphorylations preceed NOX2 activation. To determine whether the phosphorylation of p47phox is required for pansorbin-induced NOX2 activation, we transfected EBV-transformed lymphocytes deficent in p47phox with a plasmid expressing wild type p47phox or p47phox with all the phosphorylated serines mutated to alanines, p47phoxS(303-379)A. Results show that pansorbin-induced NOX2 activation was greatly decreased in lymphocytes expressing the mutant as compared to the wild-type p47phox. These results show that pansorbin induced p47phox phosphorylation on multiple sites in EBV-transformed B lymphocytes and this process is required for pansorbin-induced NADPH oxidase activation in these cells.
PMCID: PMC3484414  PMID: 23119229
NADPH oxidase; NOX2; p47phox; B lymphocytes; pansorbin; ROS; phosphorylation
3.  Implication of NADPH Oxidases in the Early Inflammation Process Generated by Cystic Fibrosis Cells 
ISRN inflammation  2012;2012:481432.
In cystic fibrosis (CF) patients, pulmonary inflammation is a major cause of morbidity and mortality. The aim of this study was to further investigate whether oxidative stress could be involved in the early inflammatory process associated with CF pathogenesis. We used a model of CFTR defective epithelial cell line (IB3-1) and its reconstituted CFTR control (S9) cell line cultured in various ionic conditions. This study showed that IB3-1 and S9 cells expressed the NADPH oxidases (NOXs) DUOX1/2 and NOX2 at the same level. Nevertheless, several parameters participating in oxidative stress (increased ROS production and apoptosis, decreased total thiol content) were observed in IB3-1 cells cultured in hypertonic environment as compared to S9 cells and were inhibited by diphenyleneiodonium (DPI), a well-known inhibitor of NOXs; besides, increased production of the proinflammatory cytokines IL-6 and IL-8 by IB3-1 cells was also inhibited by DPI as compared to S9 cells. Furthermore, calcium ionophore (A23187), which upregulates DUOX and NOX2 activities, strongly induced oxidative stress and IL-8 and IL-6 overexpression in IB3-1 cells. All these events were suppressed by DPI, supporting the involvement of NOXs in the oxidative stress, which can upregulate proinflammatory cytokine production by the airway CFTR-deficient cells and trigger early pulmonary inflammation in CF patients.
doi:10.5402/2012/481432
PMCID: PMC3765752  PMID: 24049649
4.  Francisella Acid Phosphatases Inactivate the NADPH Oxidase in Human Phagocytes 
Francisella tularensis contains four putative acid phosphatases that are conserved in Francisella novicida. An F. novicida quadruple mutant (AcpA, AcpB, AcpC, and Hap [ΔABCH]) is unable to escape the phagosome or survive in macrophages and is attenuated in the mouse model. We explored whether reduced survival of the ΔABCH mutant within phagocytes is related to the oxidative response by human neutrophils and macrophages. F. novicida and F. tularensis subspecies failed to stimulate reactive oxygen species production in the phagocytes, whereas the F. novicida ΔABCH strain stimulated a significant level of reactive oxygen species. The ΔABCH mutant, but not the wild-type strain, strongly colocalized with p47phox and replicated in phagocytes only in the presence of an NADPH oxidase inhibitor or within macrophages isolated from p47phox knockout mice. Finally, purified AcpA strongly dephosphorylated p47phox and p40phox, but not p67phox, in vitro. Thus, Francisella acid phosphatases play a major role in intramacrophage survival and virulence by regulating the generation of the oxidative burst in human phagocytes.
doi:10.4049/jimmunol.0903413
PMCID: PMC2952287  PMID: 20348422
5.  Potent Anti-Inflammatory and Neuroprotective Effects of TGFβ1 Are Mediated through the Inhibition of ERK and p47phox-Ser345 Phosphorylation and Translocation in Microglia 
TGFβ1 is one of the most potent endogenous immune modulators of inflammation. The molecular mechanism of its anti-inflammatory effect on the activation of the transcription factor NF-kB has been well studied, however, the potential effects of TGFβ1 on other pro-inflammatory signaling pathways is less clear. In this study, using the well-established lipopolysaccharide (LPS) and the 1-methyl-4-phenylpyridinium (MPP+)-mediated models of Parkinson’s disease (PD), we demonstrate TGFβ1 exerts significant neuroprotection in both models via its anti-inflammatory properties. The neuroprotective effects of TGFβ1 are mainly attributed to its ability to inhibit the production of reactive oxygen species (ROS) from microglia during their activation or reactivation. Moreover, we demonstrate that TGFβ1 inhibited LPS-induced NADPH oxidase (PHOX) subunit p47phox translocation from the cytosol to the membrane in microglia within 10 min. Mechanistic studies show that TGFβ1 fails to protect dopaminergic neurons in cultures from PHOX knockout mice, and significantly reduced LPS-induced translocation of the PHOX cytosolic subunits p47phox to the cell membrane. In addition, LPS-induced ERK phosphorylation and subsequent serine345 (Ser345) phosphorylation on p47phox were significantly inhibited by TGFβ1 pretreatment. Taken together, our results show that TGFβ1 exerted potent anti-inflammatory and neuroprotective properties, either through the prevention of the direct activation of microglia by LPS, or indirectly through the inhibition of reactive microgliosis elicited by MPP+. The molecular mechanisms of TGFβ1-mediated anti-inflammatory properties is through the inhibition of PHOX activity by preventing the ERK-dependent phosphorylation of Ser345 on p47phox in microlgia to reduce oxidase activities induced by LPS.
PMCID: PMC2741684  PMID: 18566433
Monocytes/Macrophages; Neuroimmunology; Inflammation
6.  Punicic Acid a Conjugated Linolenic Acid Inhibits TNFα-Induced Neutrophil Hyperactivation and Protects from Experimental Colon Inflammation in Rats 
PLoS ONE  2009;4(7):e6458.
Background
Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFα primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFα-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo.
Methodology and Principal Findings
We analyzed the effect of punicic acid on TNFα-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFα-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP)-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFα+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation.
Conclusions/Significance
These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFα-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.
doi:10.1371/journal.pone.0006458
PMCID: PMC2714468  PMID: 19649246
7.  p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases 
Experimental & Molecular Medicine  2009;41(4):217-225.
Phagocytes such as neutrophils play a vital role in host defense against microbial pathogens. The anti-microbial function of neutrophils is based on the production of superoxide anion (O2•-), which generates other microbicidal reactive oxygen species (ROS) and release of antimicrobial peptides and proteins. The enzyme responsible for O2•- production is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two transmembrane proteins (p22phox and gp91phox, also called NOX2, which together form the cytochrome b558) and four cytosolic proteins (p47phox, p67phox, p40phox and a GTPase Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate agents. This process is dependent on the phosphorylation of the cytosolic protein p47phox. p47phox is a 390 amino acids protein with several functional domains: one phox homology (PX) domain, two src homology 3 (SH3) domains, an auto-inhibitory region (AIR), a proline rich domain (PRR) and has several phosphorylated sites located between Ser303 and Ser379. In this review, we will describe the structure of p47phox, its phosphorylation and discuss how these events regulate NADPH oxidase activation.
doi:10.3858/emm.2009.41.4.058
PMCID: PMC2679237  PMID: 19372727
CYBB protein, human; NADPH oxidase; neutrophil cytosolic factor 1; neutrophils; phosphorylation; reactive oxygen species; review
8.  Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia 
Background
Activated microglia elicits a robust amount of pro-inflammatory cytokines, which are implicated in the pathogenesis of tuberculosis in the central nervous system (CNS). However, little is known about the intracellular signaling mechanisms governing these inflammatory responses in microglia in response to Mycobacterium tuberculosis (Mtb).
Methods
Murine microglial BV-2 cells and primary mixed glial cells were stimulated with sonicated Mtb (s-Mtb). Intracellular ROS levels were measured by staining with oxidative fluorescent dyes [2',7'-Dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidium (DHE)]. NADPH oxidase activities were measured by lucigenin chemiluminescence assay. S-Mtb-induced MAPK activation and pro-inflammatory cytokine release in microglial cells were measured using by Western blot analysis and enzyme-linked immunosorbent assay, respectively.
Results
We demonstrate that s-Mtb promotes the up-regulation of reactive oxygen species (ROS) and the rapid activation of mitogen-activated protein kinases (MAPKs), including p38 and extracellular signal-regulated kinase (ERK) 1/2, as well as the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12p40 in murine microglial BV-2 cells and primary mixed glial cells. Both NADPH oxidase and mitochondrial electron transfer chain subunit I play an indispensable role in s-Mtb-induced MAPK activation and pro-inflammatory cytokine production in BV-2 cells and mixed glial cells. Furthermore, the activation of cytosolic NADPH oxidase p47phox and MAPKs (p38 and ERK1/2) is mutually dependent on s-Mtb-induced inflammatory signaling in murine microglia. Neither TLR2 nor dectin-1 was involved in s-Mtb-induced inflammatory responses in murine microglia.
Conclusion
These data collectively demonstrate that s-Mtb actively induces the pro-inflammatory response in microglia through NADPH oxidase-dependent ROS generation, although the specific pattern-recognition receptors involved in these responses remain to be identified.
doi:10.1186/1742-2094-4-27
PMCID: PMC2235845  PMID: 18036262
10.  Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock 
Mammalian 2-Cys peroxiredoxin II (Prx II) is a cellular peroxidase that eliminates endogenous H2O2. The involvement of Prx II in the regulation of lipopolysaccharide (LPS) signaling is poorly understood. In this report, we show that LPS induces substantially enhanced inflammatory events, which include the signaling molecules nuclear factor κB and mitogen-activated protein kinase (MAPK), in Prx II–deficient macrophages. This effect of LPS was mediated by the robust up-regulation of the reactive oxygen species (ROS)–generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the phosphorylation of p47phox. Furthermore, challenge with LPS induced greater sensitivity to LPS-induced lethal shock in Prx II–deficient mice than in wild-type mice. Intravenous injection of Prx II–deficient mice with the adenovirus-encoding Prx II gene significantly rescued mice from LPS-induced lethal shock as compared with the injection of a control virus. The administration of catalase mimicked the reversal effects of Prx II on LPS-induced inflammatory responses in Prx II–deficient cells, which suggests that intracellular H2O2 is attributable, at least in part, to the enhanced sensitivity to LPS. These results indicate that Prx II is an essential negative regulator of LPS-induced inflammatory signaling through modulation of ROS synthesis via NADPH oxidase activities and, therefore, is crucial for the prevention of excessive host responses to microbial products.
doi:10.1084/jem.20061849
PMCID: PMC2137909  PMID: 17325201
11.  A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites  
Journal of Clinical Investigation  2006;116(7):2033-2043.
Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-α prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem mass spectrometry to show that GM-CSF and TNF-α induce phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase, in human neutrophils. As Ser345 is located in the MAPK consensus sequence, we tested the effects of MAPK inhibitors. Inhibitors of the ERK1/2 pathway abrogated GM-CSF–induced phosphorylation of Ser345, while p38 MAPK inhibitor abrogated TNF-α–induced phosphorylation of Ser345. Transfection of HL-60 cells with a mutated p47phox (S345A) inhibited GM-CSF– and TNF-α–induced priming of ROS production. This event was also inhibited in neutrophils by a cell-permeable peptide containing a TAT-p47phox-Ser345 sequence. Furthermore, ROS generation, p47phox-Ser345 phosphorylation, and ERK1/2 and p38 MAPK phosphorylation were increased in synovial neutrophils from rheumatoid arthritis (RA) patients, and TAT-Ser345 peptide inhibited ROS production by these primed neutrophils. This study therefore identifies convergent MAPK pathways on Ser345 that are involved in GM-CSF– and TNF-α–induced priming of neutrophils and are activated in RA. Inhibition of the point of convergence of these pathways might serve as a novel antiinflammatory strategy.
doi:10.1172/JCI27544
PMCID: PMC1479423  PMID: 16778989
12.  Interleukin-18 Primes the Oxidative Burst of Neutrophils in Response to Formyl-Peptides: Role of Cytochrome b558 Translocation and N-Formyl Peptide Receptor Endocytosis 
Using flow cytometry, we observed that interleukin-18 (IL-18) primed human neutrophils (PMNs) in whole blood to produce superoxide anion (O2°−) in response to N-formyl peptide (fMLP) stimulation, whereas IL-18 alone had no significant effect. In contrast to tumor necrosis factor alpha (TNF-α), which is a cytokine known to strongly prime O2°− production, IL-18 did not induce either p47phox phosphorylation or its translocation from the cytosol to the plasma membrane. However, IL-18 increased PMN degranulation, as shown by increased levels of cytochrome b558 and CD11b expression at the PMN surface. Moreover, addition of IL-18 to whole blood for 45 min reduced the ability of PMNs to bind to fMLP, suggesting endocytosis of fMLP receptors, as visualized by confocal microscopy. 2,3-Butanedione 2-monoxime, which inhibits endosomal recycling of plasma membrane components back to the cell surface, concomitantly accentuated the diminution of fMLP binding at the PMN surface and increased IL-18 priming of O2°− production by PMNs in response to fMLP. This suggests that fMLP receptor endocytosis could account, at least in part, for the priming of O2°− production. In addition, genistein, a tyrosine kinase inhibitor, and SB203580, a p38 mitogen-activated protein kinase (p38MAPK) inhibitor, completely reversed the decreased level of fMLP binding and increased the level of CD11b expression after IL-18 treatment. Flow cytometric analysis of intact PMNs in whole blood showed that IL-18 increased p38MAPK phosphorylation and tyrosine phosphorylation. In particular, IL-18 induced phosphorylation of focal adhesion kinase (p125FAK), which has been implicated in cytoskeleton reorganization. Taken together, our findings suggest several mechanisms that are likely to regulate cytokine-induced priming of the oxidative burst in PMNs in their blood environment.
doi:10.1128/CDLI.12.3.436-446.2005
PMCID: PMC1065204  PMID: 15753257

Results 1-12 (12)