Search tips
Search criteria

Results 1-25 (48)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis 
The Journal of Neuroscience  2016;36(3):1001-1007.
One of the most common symptoms of Alzheimer's disease (AD) and related tauopathies is memory loss. The exact mechanisms leading to memory loss in tauopathies are not yet known; however, decreased translation due to ribosomal dysfunction has been implicated as a part of this process. Here we use a proteomics approach that incorporates subcellular fractionation and coimmunoprecipitation of tau from human AD and non-demented control brains to identify novel interactions between tau and the endoplasmic reticulum (ER). We show that ribosomes associate more closely with tau in AD than with tau in control brains, and that this abnormal association leads to a decrease in RNA translation. The aberrant tau–ribosome association also impaired synthesis of the synaptic protein PSD-95, suggesting that this phenomenon contributes to synaptic dysfunction. These findings provide novel information about tau-protein interactions in human brains, and they describe, for the first time, a dysfunctional consequence of tau–ribosome associations that directly alters protein synthesis.
SIGNIFICANCE STATEMENT Despite the identification of abnormal tau–ribosomal interactions in tauopathies >25 years ago, the consequences of this association remained elusive until now. Here, we show that pathological tau associates closely with ribosomes in AD brains, and that this interaction impairs protein synthesis. The overall result is a stark reduction of nascent proteins, including those that participate in synaptic plasticity, which is crucial for learning and memory. These data mechanistically link a common pathologic sign, such as the appearance of pathological tau inside brain cells, with cognitive impairments evident in virtually all tauopathies.
PMCID: PMC4719006  PMID: 26791227
Alzheimer; ribosome; RNA; tau; tauopathies; translation
2.  LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts 
Scientific Reports  2016;6:29945.
Leucine-rich repeat kinase 2 (LRRK2) has been linked to several clinical disorders including Parkinson’s disease (PD), Crohn’s disease, and leprosy. Furthermore in rodents, LRRK2 deficiency or inhibition leads to lysosomal pathology in kidney and lung. Here we provide evidence that LRRK2 functions together with a second PD-associated gene, RAB7L1, within an evolutionarily conserved genetic module in diverse cellular contexts. In C. elegans neurons, orthologues of LRRK2 and RAB7L1 act coordinately in an ordered genetic pathway to regulate axonal elongation. Further genetic studies implicated the AP-3 complex, which is a known regulator of axonal morphology as well as of intracellular protein trafficking to the lysosome compartment, as a physiological downstream effector of LRRK2 and RAB7L1. Additional cell-based studies implicated LRRK2 in the AP-3 complex-related intracellular trafficking of lysosomal membrane proteins. In mice, deficiency of either RAB7L1 or LRRK2 leads to prominent age-associated lysosomal defects in kidney proximal tubule cells, in the absence of frank CNS pathology. We hypothesize that defects in this evolutionarily conserved genetic pathway underlie the diverse pathologies associated with LRRK2 in humans and in animal models.
PMCID: PMC4947924  PMID: 27424887
3.  Corrigendum to “Syk and ye shall find” [EBioMedicine 2 (11) (2015) 190-1591] 
EBioMedicine  2016;8:349.
PMCID: PMC4919567  PMID: 27428444
4.  Impairment of PARK14-dependent Ca2+ signalling is a novel determinant of Parkinson's disease 
Nature Communications  2016;7:10332.
The etiology of idiopathic Parkinson's disease (idPD) remains enigmatic despite recent successes in identification of genes (PARKs) that underlie familial PD. To find new keys to this incurable neurodegenerative disorder we focused on the poorly understood PARK14 disease locus (Pla2g6 gene) and the store-operated Ca2+ signalling pathway. Analysis of the cells from idPD patients reveals a significant deficiency in store-operated PLA2g6-dependent Ca2+ signalling, which we can mimic in a novel B6.Cg-Pla2g6ΔEx2-VB (PLA2g6 ex2KO) mouse model. Here we demonstrate that genetic or molecular impairment of PLA2g6-dependent Ca2+ signalling is a trigger for autophagic dysfunction, progressive loss of dopaminergic (DA) neurons in substantia nigra pars compacta and age-dependent L-DOPA-sensitive motor dysfunction. Discovery of this previously unknown sequence of pathological events, its association with idPD and our ability to mimic this pathology in a novel genetic mouse model opens new opportunities for finding a cure for this devastating neurodegenerative disease.
PLA2g6 regulates store-operated Ca2+ entry and is linked to Parkinson's disease. Here, Zhou et al find faulty PLA2g6-dependent Ca2+ signaling in idiopathic PD patients, and show that its impairment triggers autophagic dysfunction and loss of dopaminergic neurons in a new PLA2g6 ex2KO mouse model.
PMCID: PMC4729940  PMID: 26755131
6.  Physiological Protein Aggregation Run Amuck: Stress Granules and the Genesis of Neurodegenerative Disease 
Discovery medicine  2014;17(91):47-52.
Recent advances in neurodegenerative diseases point to novel mechanisms of protein aggregation. RNA binding proteins are abundant in the nucleus, where they carry out processes such as RNA splicing. Neurons also express RNA binding proteins in the cytoplasm and processes to enable functions such as mRNA transport and local protein synthesis. The biology of RNA binding proteins turns out to have important features that appear to promote the pathophysiology of amyotrophic lateral sclerosis and might contribute to other neurodegenerative disease. RNA binding proteins consolidate transcripts to form complexes, termed RNA granules, through a process of physiological aggregation mediated by glycine rich domains that exhibit low protein complexity and in some cases share homology to similar domains in known prion proteins. Under conditions of cell stress these RNA granules expand, leading to form stress granules, which function in part to sequester specialized transcript and promote translation of protective proteins. Studies in humans show that pathological aggregates occurring in ALS, Alzheimer’s disease, and other dementias co-localize with stress granules. One increasingly appealing hypothesis is that mutations in RNA binding proteins or prolonged periods of stress cause formation of very stable, pathological stress granules. The consolidation of RNA binding proteins away from the nucleus and neuronal arbors into pathological stress granules might impair the normal physiological activities of these RNA binding proteins causing the neurodegeneration associated with these diseases. Conversely, therapeutic strategies focusing on reducing formation of pathological stress granules might be neuroprotective.
PMCID: PMC4694572  PMID: 24411700
7.  Depletion of microglia and inhibition of exosome synthesis halt tau propagation 
Nature neuroscience  2015;18(11):1584-1593.
Accumulation of pathological tau protein is a major hallmark of Alzheimer’s disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus–based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target.
PMCID: PMC4694577  PMID: 26436904
8.  Syk and Yea Shall Find 
EBioMedicine  2015;2(11):1590-1591.
PMCID: PMC4740329  PMID: 26870779
9.  Pathological Stress Granules in Alzheimer’s Disease 
Brain research  2014;1584:52-58.
A feature of neurodegenerative disease is the accumulation of insoluble protein aggregates in the brain. In some conditions, including Amyotrophic Lateral Sclerosis and Frontotemporal lobar degeneration, the primary aggregating entities are RNA binding proteins. Through regulated prion-like assembly, RNA binding proteins serve many functions in RNA metabolism that are essential for the healthy maintenance of cells of the central nervous system. Those RNA binding proteins that are the core nucleating factors of Stress Granules (SGs), including TIA-1, TIAR, TTP and G3BP1, are also found in the pathological lesions of other neurological conditions, such as Alzheimer’s disease, where the hallmark aggregating protein is not an RNA binding protein. This discovery suggests that the regulated cellular pathway, which utilizes assembly of RNA binding proteins to package and silence mRNAs during stress, may be integral in the aberrant pathological protein aggregation that occurs in numerous neurodegenerative conditions.
PMCID: PMC4256948  PMID: 25108040
Pathological stress granules; tau; TIA-1; G3BP1; Alzheimer’s Disease
10.  A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity 
Human Molecular Genetics  2014;23(18):4887-4905.
Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a critical goal for the development of effective therapeutic strategies. In this study, we apply systems biology tools to human PD brain and blood transcriptomes to reverse-engineer a LRRK2-centered gene regulatory network. This network identifies several putative master regulators of LRRK2 function. In particular, the signaling gene RGS2, which encodes for a GTPase-activating protein (GAP), is a key regulatory hub connecting the familial PD-associated genes DJ-1 and PINK1 with LRRK2 in the network. RGS2 expression levels are reduced in the striata of LRRK2 and sporadic PD patients. We identify RGS2 as a novel interacting partner of LRRK2 in vivo. RGS2 regulates both the GTPase and kinase activities of LRRK2. We show in mammalian neurons that RGS2 regulates LRRK2 function in the control of neuronal process length. RGS2 is also protective against neuronal toxicity of the most prevalent mutation in LRRK2, G2019S. We find that RGS2 regulates LRRK2 function and neuronal toxicity through its effects on kinase activity and independently of GTPase activity, which reveals a novel mode of action for GAP proteins. This work identifies RGS2 as a promising target for interfering with neurodegeneration due to LRRK2 mutations in PD patients.
PMCID: PMC4140468  PMID: 24794857
11.  Mutations in LRRK2 potentiate age-related impairment of autophagic flux 
Autophagy is thought to play a pivotal role in the pathophysiology of Parkinson’s disease, but little is known about how genes linked to PD affect autophagy in the context of aging. We generated lines of C. elegans expressing reporters for the autophagosome and lysosome expressed only in dopaminergic neurons, and examined autophagy throughout the lifespan in nematode lines expressing LRRK2 and α-synuclein. Dopamine neurons exhibit a progressive loss of autophagic function with aging. G2019S LRRK2 inhibited autophagy and accelerated the age-related loss of autophagic function, while WT LRRK2 improved autophagy throughout the life-span. Expressing α-synuclein with G2019S or WT LRRK2 caused age-related synergistic inhibition of autophagy and increase in degeneration of dopaminergic neurons. The presence of α-synuclein particularly accentuated age-related inhibition of autophagy by G2019S LRRK2. This work indicates that LRRK2 exhibits a selective, age-linked deleterious interaction with α-synuclein that promotes neurodegeneration.
PMCID: PMC4702340  PMID: 26159606
C. elegans; Autophagy; LRRK2; α-synuclein; Imaging; LC3; Aging
12.  Regulation of autophagy by LRRK2 in C. elegans 
Neuro-degenerative diseases  2013;13(0):110-113.
Mutations in LRRK2 are a common cause of familial Parkinson's disease. However, the mechanisms through which LRRK2 mutations contribute to neurodegeneration are poorly understood.
We investigated the effects of WT, G2019S, R1441C and kinase dead (KD) LRRK2 across multiple different cellular compartments in order to gain insight into the breadth of LRRK2 effects on cellular function.
Nematodes expressing lgg-1::RFP, hsp1::GFP, hsp4::GFP and hsp6::GFP were crossed to nematode lines expressing WT, G2019S, R1441C or KD LRRK2.
We observed that G2019S and R1441C LRRK2 inhibited autophagy, while WT, G2019S and R1441C LRRK2 increased the response of the mitochondrial hsp6 reporter to stress. The response of the hsp reporters under basal conditions was more nuanced.
These results support a putative role of LRRK2 in the autophagic and mitochondrial systems.
PMCID: PMC3946265  PMID: 24192129
Autophagy; Parkinson's disease; heat shock protein; mitochondria; endoplasmic reticulum; stress
13.  ALS-Linked Mutations Enlarge TDP-43-Enriched Neuronal RNA Granules in the Dendritic Arbor 
The Journal of Neuroscience  2014;34(12):4167-4174.
Trans-activating response region (TAR) DNA-binding protein of 43 kDa (TDP-43) is an RNA-binding protein that is mutated in familial amyotrophic lateral sclerosis (ALS). Disease-linked mutations in TDP-43 increase the tendency of TDP-43 to aggregate, leading to a corresponding increase in formation of stress granules, cytoplasmic protein/RNA complexes that form in response to stress. Although the field has focused on stress granules, TDP-43 also forms other types of RNA granules. For example, TDP-43 is associated with RNA granules that are prevalent throughout the dendritic arbor in neurons. Because aggregation of TDP-43 is also important for the formation of these neuronal RNA granules, we hypothesized that disease-linked mutations might alter granule formation even in the absence of stress. We now report that ALS-linked mutations in TDP-43 (A315T and Q343R) increase the size of neuronal TDP-43 granules in the dendritic arbor of rat hippocampal neurons. The mutations correspondingly reduce the granule density, movement, and mobility of TDP-43 granules. Depolarization of rat hippocampal neurons with KCl stimulates TDP-43 granule migration into dendrites, but A315T and Q343R TDP-43 granules migrate shorter distances and into fewer dendrites than wild-type TDP-43. These findings highlight novel elements of TDP-43 biology that are affected by disease-linked mutations and suggest a neuronally selective mechanism through which TDP-43 mutations might elicit neuronal dysfunction.
PMCID: PMC3960463  PMID: 24647938
G3BP; induced pluripotent stem cells; stress granule; TIA-1; trafficking; translation
14.  The Role Stress Granules and RNA Binding Proteins in Neurodegeneration 
Gerontology  2013;59(6):10.1159/000354170.
The eukaryotic stress response involves translational suppression of non-housekeeping proteins and the sequestration of unnecessary mRNA transcripts into stress granules (SGs). This process is dependent on mRNA binding proteins (RBPs) that interact with capped mRNA transcripts through RNA recognition motifs, and exhibit reversible aggregation through hydrophobic poly-glycine domains, some of which are homologous to yeast prion proteins. The activity and aggregation of RBPs appears to be important in the context of unfolded protein diseases. The discovery that mutations in these RBPs can cause familial motor neuron diseases and familial dementias indicates the importance of these genes to neuronal degeneration. Some disorders linked to mutations in RBPs include: amyotrophic lateral sclerosis (ALS), frontotemporal dementia and spinal muscular atrophy (SMA). These RBPs also associate with pathological structures in other neurodegenerative diseases, including Huntington’s chorea, Creutzfeld-Jacob disease, and Alzheimer’s disease. Interestingly, protein levels of RBPs change across the aging spectrum and may be linked to other age-related disorders, such as type 2 diabetes. The link between SG pathways and proteins linked to neurodegenerative diseases suggests a potential role for common pathways in both processes, such as those involved in translational control, and highlights potentially novel targets for therapeutic intervention in neurodegenerative diseases.
PMCID: PMC3863624  PMID: 24008580
Alzheimer’s disease; Frontotemporal Dementia; Amyotrophic Lateral Sclerosis; Fragile X Syndrome; Neurofibrillary Tangles; TIA-1; TTP; G3BP; TDP-43; FUS; Tau protein; Prion protein; HuR; Staufen; Pamilio; Dcp1a
15.  Interventions for Heart Disease and Their Effects on Alzheimer’s disease 
Neurological research  2006;28(6):630-636.
To review the contributions of cardiovascular disease to Alzheimer’s disease and Vascular Dementia.
Review of the literature
Alzheimer’s disease and Vascular Dementia both share significant risk attributable to cardiovascular risk factors. Hypertension and hypercholesterolemia at midlife are significant risk factors for both subsequent dementia. Diabetes and obesity are also risk factors for dementia. Stressful medical procedures, such as coronary artery bypass and graft operations also appear to contribute to the risk of Alzheimer’s disease. Apolipoprotein E is the major risk factor for Alzheimer’s disease. Apolipoprotein E does not appear to contribute to Alzheimer’s disease by increasing serum cholesterol, but it might contribute to the disease through a mechanism involving both Aβ and an increase in neuronal vulnerability to stress.
The strong association of cardiovascular risk factors with Alzheimer’s disease and Vascular dementia suggest that these diseases share some biological pathways in common. The contribution of cardiovascular disease to Alzheimer’s disease and Vascular Dementia suggest that cardiovascular therapies might prove useful in treating or preventing dementia. Anti-hypertensive medications appear to be beneficial in preventing vascular dementia. Statins might be beneficial in preventing the progression of dementia in subjects with Alzheimer’s disease.
PMCID: PMC3913064  PMID: 16945215
beta-amyloid; cholesterol; diabetes; hypertension; statins
16.  A high content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity 
TDP-43 is an RNA binding protein found to accumulate in the cytoplasm of brain and spinal cord from patients affected with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Nuclear TDP-43 protein regulates transcription through several mechanisms, and under stressed conditions it forms cytoplasmic aggregates that co-localize with stress granule (SG) proteins in cell culture. These granules are also found in the brain and spinal cord of patients affected with ALS and FTLD. The mechanism through which TDP-43 might contribute to neurodegenerative diseases is poorly understood. In order to investigate the pathophysiology of TDP-43 aggregation and to isolate potential therapeutic targets, we screened a chemical library of 75,000 compounds using high content analysis with PC12 cells that inducibly express human TDP-43 tagged with GFP. The screen identified 16 compounds that dose-dependently decreased the TDP-43 inclusions without significant cellular toxicity or changes in total TDP-43 expression levels. To validate the effect of the compounds, we tested compounds by Western Blot analysis and in a model that replicates some of the relevant disease phenotypes. The hits from this assay will be useful for elucidating regulation of TDP-43, stress granule response, and possible ALS therapeutics.
PMCID: PMC3913261  PMID: 24019256
Amyotrophic lateral sclerosis; RNA granule; RNA binding protein; aggregation; high throughput screen; protein synthesis
17.  TDP-43: A New Player on the AD Field? 
Experimental neurology  2012;237(1):90-95.
PMCID: PMC3910368  PMID: 22691390
18.  The Scientist’s Pledge 
PMCID: PMC3910371  PMID: 23708595
The Journal of biological chemistry  2005;280(52):42655-42668.
How genetic and environmental factors interact in Parkinson’s disease is poorly understood. We have now compared the patterns of vulnerability and rescue of C. elegans with genetic modifications of three different genetic factors implicated in PD. We observed that expressing α-synuclein, deleting parkin (K08E3.7) or knocking down DJ-1 (B0432.2) or parkin, produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than non-transgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (FeII or CuII) or etoposide compared to non-transgenic nematodes. Each of the PD-related lines was also partially rescued by the anti-oxidant probucol, the mitochondrial complex II activator, D-β-hydroxybutyrate (DβHB) or the anti-apoptotic bile acid tauroursodeoxycholic acid (TUDCA). Complete protection in all lines was achieved by combining DβHB with TUDCA but not with probucol. These results show that diverse PD-related genetic modifications disrupt mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD.
PMCID: PMC3910375  PMID: 16239214
20.  Interaction of LRRK2 with kinase and GTPase signaling cascades 
LRRK2 is a protein that interacts with a plethora of signaling molecules, but the complexity of LRRK2 function presents a challenge for understanding the role of LRRK2 in the pathophysiology of Parkinson’s disease (PD). Studies of LRRK2 using over-expression in transgenic mice have been disappointing, however, studies using invertebrate systems have yielded a much clearer picture, with clear effects of LRRK2 expression, knockdown or deletion in Caenorhabditis elegans and Drosophila on modulation of survival of dopaminergic neurons. Recent studies have begun to focus attention on particular signaling cascades that are a target of LRRK2 function. LRRK2 interacts with members of the mitogen activated protein kinase (MAPK) pathway and might regulate the pathway action by acting as a scaffold that directs the location of MAPK pathway activity, without strongly affecting the amount of MAPK pathway activity. Binding to GTPases, GTPase-activating proteins and GTPase exchange factors are another strong theme in LRRK2 biology, with LRRK2 binding to rac1, cdc42, rab5, rab7L1, endoA, RGS2, ArfGAP1, and ArhGEF7. All of these molecules appear to feed into a function output for LRRK2 that modulates cytoskeletal outgrowth and vesicular dynamics, including autophagy. These functions likely impact modulation of α-synuclein aggregation and associated toxicity eliciting the disease processes that we term PD.
PMCID: PMC4087324  PMID: 25071441
GTPase; kinase; trafficking; cytoskeleton; actin; autophagy; cell death; dopamine
21.  The spectrum of disease in chronic traumatic encephalopathy 
Brain  2012;136(1):43-64.
Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I–IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I–III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer’s disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.
PMCID: PMC3624697  PMID: 23208308
axonal injury; brain trauma; frontotemporal lobar degeneration; neurodegenerative disorders; traumatic brain injury
22.  Redox Proteomics Analyses of the Influence of Co-Expression of Wild-Type or Mutated LRRK2 and Tau on C. elegans Protein Expression and Oxidative Modification: Relevance to Parkinson Disease 
Antioxidants & Redox Signaling  2012;17(11):1490-1506.
Aims: The human LRRK2 gene has been identified as the most common causative gene of autosomal-dominantly inherited and idiopathic Parkinson disease (PD). The G2019S substitution is the most common mutation in LRRK2. The R1441C mutation also occurs in cases of familial PD, but is not as prevalent. Some cases of LRRK2-based PD exhibit Tau pathology, which suggests that alterations on LRRK2 activity affect the pathophysiology of Tau. To investigate how LRRK2 might affect Tau and the pathophysiology of PD, we generated lines of C. elegans expressing human LRRK2 [wild-type (WT) or mutated (G2019S or R1441C)] with and without V337M Tau. Expression and redox proteomics were used to identify the effects of LRRK2 (WT and mutant) on protein expression and oxidative modifications. Results: Co-expression of WT LRRK2 and Tau led to increased expression of numerous proteins, including several 60S ribosomal proteins, mitochondrial proteins, and the V-type proton ATPase, which is associated with autophagy. C. elegans expressing mutant LRRK2 showed similar changes, but also showed increased protein oxidation and lipid peroxidation, the latter indexed as increased protein-bound 4-hydroxy-2-nonenal (HNE). Innovation: Our study brings new knowledge about the possible alterations induced by LRRK2 (WT and mutated) and Tau interactions, suggesting the involvement of G2019S and R1441C in Tau-dependent neurodegenerative processes. Conclusion: These results suggest that changes in LRRK2 expression or activity lead to corresponding changes in mitochondrial function, autophagy, and protein translation. These findings are discussed with reference to the pathophysiology of PD. Antioxid. Redox Signal. 17, 1490–1506.
PMCID: PMC3448940  PMID: 22315971
23.  Induced Pluripotent Stem Cell Modeling of Multisystemic, Hereditary Transthyretin Amyloidosis 
Stem Cell Reports  2013;1(5):451-463.
Familial transthyretin amyloidosis (ATTR) is an autosomal-dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR, protein secreted from the liver aggregates and forms fibrils in target organs, chiefly the heart and peripheral nervous system, highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here, we describe the directed differentiation of ATTR patient-specific iPSCs into hepatocytes that produce mutant TTR, and the cardiomyocytes and neurons normally targeted in the disease. We demonstrate that iPSC-derived neuronal and cardiac cells display oxidative stress and an increased level of cell death when exposed to mutant TTR produced by the patient-matched iPSC-derived hepatocytes, recapitulating essential aspects of the disease in vitro. Furthermore, small molecule stabilizers of TTR show efficacy in this model, validating this iPSC-based, patient-specific in vitro system as a platform for testing therapeutic strategies.
•Successful modeling of familial amyloidosis in vitro using iPSC technology•Proto-fibril formation leads to cellular damage in two target tissues of amyloidosis•iPSCs can be used in the testing of novel therapeutics for protein folding disorders
This work involves the modeling of hereditary transthyretin amyloidosis in vitro using iPSC technology. Murphy and colleagues demonstrate that it is possible to model a long-term, complex, multisystem disease using hepatic, cardiac, and neuronal lineages derived from patient-specific stem cells and validate this approach for the testing of therapeutic strategies.
PMCID: PMC3841264  PMID: 24286032
24.  Characterization of Insulin Degrading Enzyme and other Aβ Degrading Proteases in Human Serum: a Role in Alzheimer’s disease? 
Sporadic Alzheimer’s disease (AD) patients have low amyloid-β peptide (Aβ) clearance in the central nervous system (CNS). The peripheral Aβ clearance may also be important but its role in AD remains unclear. We aimed to study the Aβ degrading proteases including insulin degrading enzyme (IDE), angiotensin converting enzyme (ACE) and others in blood. Using the fluorogenic substrate V—a substrate of IDE and other metalloproteases, we showed that human serum degraded the substrate V, and the activity was inhibited by adding increasing dose of Aβ. The existence of IDE activity was demonstrated by the inhibition of insulin, amylin or EDTA, and further confirmed by immunocapture of IDE using monoclonal antibodies. The involvement of ACE was indicated by the ability of the ACE inhibitor, lisinopril, to inhibit the substrate V degradation. To test the variations of substrate V degradation in humans, we used serum samples from a homebound elderly population with cognitive diagnoses. Compared with the elderly who had normal cognition, those with probable AD and amnestic mild cognitive impairment (amnestic MCI) had lower peptidase activities. Probable AD or amnestic MCI as an outcome remained negatively associated with serum substrate V degradation activity after adjusting for the confounders. The elderly with probable AD had lower serum substrate V degradation activity compared with those who had vascular dementia. The blood proteases mediating Aβ degradation may be important for the AD pathogenesis. More studies are needed to specify each Aβ degrading protease in blood as a useful biomarker and a possible treatment target for AD.
PMCID: PMC3784270  PMID: 22232014
Aβ; degradation; protease; insulin degrading enzyme; angiotensin convertingenzyme; serum; alzheimer’s disease
25.  Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model 
Science translational medicine  2012;4(134):134ra60.
Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.
PMCID: PMC3739428  PMID: 22593173

Results 1-25 (48)