PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Genome-Wide Scan for Copy Number Variation Association with Age at Onset of Alzheimer’s Disease 
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with high prevalence, which imposes a substantial public health problem. The heritability of AD is estimated at 60–80% forecasting the potential use of genetic biomarkers for risk stratification in the future. Several large scale genome-wide association studies using high frequency variants identified 10 loci accountable for only a fraction of the estimated heritability. To find the missing heritability, systematic assessment of various mutational mechanisms needs to be performed. This copy number variation (CNV) genome-wide association study with age at onset (AAO) of AD identified 5 CNV regions that may contribute to the heritability of AAO of AD. Two CNV events are intragenic causing a deletion in CPNE4. In addition, to further study the mutational load at the 10 known susceptibility loci, CNVs overlapping with these loci were also catalogued. We identified rare small events overlapping CR1 and BIN1 in AD and normal controls with opposite CNV dosage. The CR1 events are consistent with previous reports. Larger scale studies with deeper genotyping specifically addressing CNV are needed to evaluate the significance of these findings.
doi:10.3233/JAD-2012-121285
PMCID: PMC4066557  PMID: 23202439
Age at onset; Alzheimer’s disease; copy number variation
2.  The neurological disease ontology 
Background
We are developing the Neurological Disease Ontology (ND) to provide a framework to enable representation of aspects of neurological diseases that are relevant to their treatment and study. ND is a representational tool that addresses the need for unambiguous annotation, storage, and retrieval of data associated with the treatment and study of neurological diseases. ND is being developed in compliance with the Open Biomedical Ontology Foundry principles and builds upon the paradigm established by the Ontology for General Medical Science (OGMS) for the representation of entities in the domain of disease and medical practice. Initial applications of ND will include the annotation and analysis of large data sets and patient records for Alzheimer’s disease, multiple sclerosis, and stroke.
Description
ND is implemented in OWL 2 and currently has more than 450 terms that refer to and describe various aspects of neurological diseases. ND directly imports the development version of OGMS, which uses BFO 2. Term development in ND has primarily extended the OGMS terms ‘disease’, ‘diagnosis’, ‘disease course’, and ‘disorder’. We have imported and utilize over 700 classes from related ontology efforts including the Foundational Model of Anatomy, Ontology for Biomedical Investigations, and Protein Ontology. ND terms are annotated with ontology metadata such as a label (term name), term editors, textual definition, definition source, curation status, and alternative terms (synonyms). Many terms have logical definitions in addition to these annotations. Current development has focused on the establishment of the upper-level structure of the ND hierarchy, as well as on the representation of Alzheimer’s disease, multiple sclerosis, and stroke. The ontology is available as a version-controlled file at http://code.google.com/p/neurological-disease-ontology along with a discussion list and an issue tracker.
Conclusion
ND seeks to provide a formal foundation for the representation of clinical and research data pertaining to neurological diseases. ND will enable its users to connect data in a robust way with related data that is annotated using other terminologies and ontologies in the biomedical domain.
doi:10.1186/2041-1480-4-42
PMCID: PMC4028878  PMID: 24314207
4.  Should EOAD patients be included in clinical trials? 
Alzheimer disease (AD) is a devastating neurodegenerative disease affecting 1 in 68 in the population. An arbitrary cutoff 65 years as the age of onset to distinguish between early- and late-onset AD has been proposed and has been used in the literature for decades. As the majority of patients develop AD after 65 years of age, most clinical trials address this population. While the early-onset cases represent only 1% to 6% of AD cases, this population is the active working subset and thus contributes to a higher public health burden per individual, and early-onset cases are the most devastating at the level of the individual and their families. In this review, we compare and contrast the clinical, neuropsychological, imaging, genetic, biomarker, and pathological features of these two arbitrary groups. Finally, we discuss the ethical dilemma of non-abandonment and justice as it pertains to exclusion of the early-onset AD patients from clinical trials.
doi:10.1186/alzrt63
PMCID: PMC3109413  PMID: 21345175
5.  A Rare Myelin Protein Zero (MPZ) Variant Alters Enhancer Activity In Vitro and In Vivo 
PLoS ONE  2010;5(12):e14346.
Background
Myelin protein zero (MPZ) is a critical structural component of myelin in the peripheral nervous system. The MPZ gene is regulated, in part, by the transcription factors SOX10 and EGR2. Mutations in MPZ, SOX10, and EGR2 have been implicated in demyelinating peripheral neuropathies, suggesting that components of this transcriptional network are candidates for harboring disease-causing mutations (or otherwise functional variants) that affect MPZ expression.
Methodology
We utilized a combination of multi-species sequence comparisons, transcription factor-binding site predictions, targeted human DNA re-sequencing, and in vitro and in vivo enhancer assays to study human non-coding MPZ variants.
Principal Findings
Our efforts revealed a variant within the first intron of MPZ that resides within a previously described SOX10 binding site is associated with decreased enhancer activity, and alters binding of nuclear proteins. Additionally, the genomic segment harboring this variant directs tissue-relevant reporter gene expression in zebrafish.
Conclusions
This is the first reported MPZ variant within a cis-acting transcriptional regulatory element. While we were unable to implicate this variant in disease onset, our data suggests that similar non-coding sequences should be screened for mutations in patients with neurological disease. Furthermore, our multi-faceted approach for examining the functional significance of non-coding variants can be readily generalized to study other loci important for myelin structure and function.
doi:10.1371/journal.pone.0014346
PMCID: PMC3002941  PMID: 21179557
6.  Charcot–Marie–Tooth disease 
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of genetic disorders presenting with the phenotype of a chronic progressive neuropathy affecting both the motor and sensory nerves. During the last decade over two dozen genes have been identified in which mutations cause CMT. The disease illustrates a multitude of genetic principles, including diverse mutational mechanisms from point mutations to copy number variation (CNV), allelic heterogeneity, age-dependent penetrance and variable expressivity. Population based studies have determined the contributions of the various genes to disease burden enabling evidence-based approaches to genetic testing.
doi:10.1038/ejhg.2009.31
PMCID: PMC2947101  PMID: 19277060
CMT; neuropathy
7.  Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J 
Nature  2007;448(7149):68-72.
Membrane-bound phosphoinositides are signalling molecules that have a key role in vesicle trafficking in eukaryotic cells1. Proteins that bind specific phosphoinositides mediate interactions between membrane-bounded compartments whose identity is partially encoded by cytoplasmic phospholipid tags. Little is known about the localization and regulation of mammalian phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a phospholipid present in small quantities that regulates membrane trafficking in the endosome–lysosome axis in yeast2. Here we describe a multi-organ disorder with neuronal degeneration in the central nervous system, peripheral neuronopathy and diluted pigmentation in the ‘pale tremor’ mouse. Positional cloning identified insertion of ETn2β (early transposon 2β)3 into intron 18 of Fig4 (A530089I17Rik), the homologue of a yeast SAC (suppressor of actin) domain PtdIns(3,5)P2 5-phosphatase located in the vacuolar membrane. The abnormal concentration of PtdIns(3,5)P2 in cultured fibroblasts from pale tremor mice demonstrates the conserved biochemical function of mammalian Fig4. The cytoplasm of fibroblasts from pale tremor mice is filled with large vacuoles that are immunoreactive for LAMP-2 (lysosomal-associated membrane protein 2), consistent with dysfunction of the late endosome–lysosome axis. Neonatal neurodegeneration in sensory and autonomic ganglia is followed by loss of neurons from layers four and five of the cortex, deep cerebellar nuclei and other localized brain regions. The sciatic nerve exhibits reduced numbers of large-diameter myelinated axons, slowed nerve conduction velocity and reduced amplitude of compound muscle action potentials. We identified pathogenic mutations of human FIG4 (KIAA0274) on chromosome 6q21 in four unrelated patients with hereditary motor and sensory neuropathy. This novel form of autosomal recessive Charcot–Marie–Tooth disorder is designated CMT4J.
doi:10.1038/nature05876
PMCID: PMC2271033  PMID: 17572665

Results 1-7 (7)