Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Coronary Heart Disease and Cortical Thickness, Gray Matter and White Matter Lesion Volumes on MRI 
PLoS ONE  2014;9(10):e109250.
Coronary heart disease (CHD) has been linked with cognitive decline and dementia in several studies. CHD is strongly associated with blood pressure, but it is not clear how blood pressure levels or changes in blood pressure over time affect the relation between CHD and dementia-related pathology. The aim of this study was to investigate relations between CHD and cortical thickness, gray matter volume and white matter lesion (WML) volume on MRI, considering CHD duration and blood pressure levels from midlife to three decades later. The study population included 69 elderly at risk of dementia who participated in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study. CAIDE participants were examined in midlife, re-examined 21 years later, and then after additionally 7 years (in total up to 30 years follow-up). MRIs from the second re-examination were used to calculate cortical thickness, gray matter and WML volume. CHD diagnoses were obtained from the Finnish Hospital Discharge Register. Linear regression analyses were adjusted for age, sex, follow-up time and scanner type, and additionally total intracranial volume in GM volume analyses. Adding diabetes, cholesterol or smoking to the models did not influence the results. CHD was associated with lower thickness in multiple regions, and lower total gray matter volume, particularly in people with longer disease duration (>10 years). Associations between CHD, cortical thickness and gray matter volume were strongest in people with CHD and hypertension in midlife, and those with CHD and declining blood pressure after midlife. No association was found between CHD and WML volumes. Based on these results, long-term CHD seems to have detrimental effects on brain gray matter tissue, and these effects are influenced by blood pressure levels and their changes over time.
PMCID: PMC4193798  PMID: 25302686
2.  Plasma homocysteine, Alzheimer and cerebrovascular pathology: a population-based autopsy study 
Brain  2013;136(9):2707-2716.
Elevated plasma total homocysteine is associated with increased risk of dementia/Alzheimer’s disease, but underlying pathophysiological mechanisms are not fully understood. This study investigated possible links between baseline homocysteine, and post-mortem neuropathological and magnetic resonance imaging findings up to 10 years later in the Vantaa 85+ population including people aged ≥85 years. Two hundred and sixty-five individuals had homocysteine and autopsy data, of which 103 had post-mortem brain magnetic resonance imaging scans. Methenamine silver staining was used for amyloid-β and modified Bielschowsky method for neurofibrillary tangles and neuritic plaques. Macroscopic infarcts were identified from cerebral hemispheres, brainstem and cerebellum slices. Standardized methods were used to determine microscopic infarcts, cerebral amyoloid angiopathy, and α-synuclein pathology. Magnetic resonance imaging was used for visual ratings of the degree of medial temporal lobe atrophy, and periventricular and deep white matter hyperintensities. Elevated baseline homocysteine was associated with increased neurofibrillary tangles count at the time of death: for the highest homocysteine quartile, odds ratio (95% confidence interval) was 2.60 (1.28–5.28). The association was observed particularly in people with dementia, in the presence of cerebral infarcts, and with longer time between the baseline homocysteine assessment and death. Also, elevated homocysteine tended to relate to amyloid-β accumulation, but this was seen only with longer baseline-death interval: odds ratio (95% confidence interval) was 2.52 (0.88–7.19) for the highest homocysteine quartile. On post-mortem magnetic resonance imaging, for the highest homocysteine quartile odds ratio (95% confidence interval) was 3.78 (1.12–12.79) for more severe medial temporal atrophy and 4.69 (1.14–19.33) for more severe periventricular white matter hyperintensities. All associations were independent of several potential confounders, including common vascular risk factors. No relationships between homocysteine and cerebral macro- or microinfarcts, cerebral amyoloid angiopathy or α-synuclein pathology were detected. These results suggest that elevated homocysteine in adults aged ≥85 years may contribute to increased Alzheimer-type pathology, particularly neurofibrillary tangles burden. This effect seems to be more pronounced in the presence of cerebrovascular pathology. Randomized controlled trials are needed to determine the impact of homocysteine-lowering treatments on dementia-related pathology.
PMCID: PMC3754457  PMID: 23983028
homocysteine; Alzheimer’s disease; Alzheimer pathology; cerebrovascular pathology; elderly
3.  Recruitment and Baseline Characteristics of Participants in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)—A Randomized Controlled Lifestyle Trial † 
Our aim is to describe the study recruitment and baseline characteristics of the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) study population. Potential study participants (age 60–77 years, the dementia risk score ≥6) were identified from previous population-based survey cohorts and invited to the screening visit. To be eligible, cognitive performance measured at the screening visit had to be at the mean level or slightly lower than expected for age. Of those invited (n = 5496), 48% (n = 2654) attended the screening visit, and finally 1260 eligible participants were randomized to the intervention and control groups (1:1). The screening visit non-attendees were slightly older, less educated, and had more vascular risk factors and diseases present. The mean (SD) age of the randomized participants was 69.4 (4.7) years, Mini-Mental State Examination 26.7 (2.0) points, systolic blood pressure 140.1 (16.2) mmHg, total serum cholesterol 5.2 (1.0) mmol/L for, and fasting glucose 6.1 (0.9) mmol/L for, with no difference between intervention and control groups. Several modifiable risk factors were present at baseline indicating an opportunity for the intervention. The FINGER study will provide important information on the effect of lifestyle intervention to prevent cognitive impairment among at risk persons.
PMCID: PMC4199023  PMID: 25211775
cognitive impairment; dementia; Alzheimer’s disease; lifestyle; intervention; randomized controlled trial
4.  History of Medically Treated Diabetes and Risk of Alzheimer Disease in a Nationwide Case-Control Study 
Diabetes Care  2013;36(7):2015-2019.
Type 2 diabetes in midlife or late life increases the risk of Alzheimer disease (AD), and type 1 diabetes has been associated with a higher risk of detrimental cognitive outcomes, although studies from older adults are lacking. We investigated whether individuals with AD were more likely to have a history of diabetes than matched controls from the general aged population.
Information on reimbursed diabetes medication (including both type 1 and 2 diabetes) of all Finnish individuals with reimbursed AD medication in 2005 (n = 28,093) and their AD-free control subjects during 1972–2005 was obtained from a special reimbursement register maintained by the Social Insurance Institute of Finland.
The prevalence of diabetes was 11.4% in the whole study population, 10.7% (n = 3,012) among control subjects, and 12.0% (n = 3,372) among AD case subjects. People with AD were more likely to have diabetes than matched control subjects (unadjusted OR 1.14 [95% CI 1.08–1.20]), even after adjusting for cardiovascular diseases (OR 1.31 [1.22–1.41]). The associations were stronger with diabetes diagnosed at midlife (adjusted OR 1.60 [1.34–1.84] and 1.25 [1.16–1.36] for midlife and late-life diabetes, respectively).
Individuals with clinically verified AD are more likely to have a history of clinically verified and medically treated diabetes than the general aged population, although the difference is small.
PMCID: PMC3687306  PMID: 23340883
5.  Dementia prevention: current epidemiological evidence and future perspective 
Dementia, a major cause of disability and institutionalization in older people, poses a serious threat to public health and to the social and economic development of modern society. Alzheimer's disease (AD) and cerebrovascular diseases are the main causes of dementia; most dementia cases are attributable to both vascular and neurodegenerative brain damage. No curative treatment is available, but epidemiological research provides a substantial amount of evidence of modifiable risk and protective factors that can be addressed to prevent or delay onset of AD and dementia. Risk of late-life dementia is determined by exposures to multiple factors experienced over the life course, and the effect of specific risk/protective factors depends largely on age. Moreover, cumulative and combined exposure to different risk/protective factors can modify their effect on dementia/AD risk. Multidisciplinary research involving epidemiology, neuropathology, and neuroimaging has provided sufficient evidence that vascular risk factors significantly contribute to the expression and progression of cognitive decline (including dementia) but that active engagement in social, physical, and mentally stimulating activities may delay the onset of dementia. However, these findings need to be confirmed by randomized controlled trials (RCTs). A promising strategy for preventing dementia is to implement intervention programs that take into account both the life-course model and the multifactorial nature of this syndrome. In Europe, there are three ongoing multidomain interventional RCTs that focus on the optimal management of vascular risk factors and vascular diseases. The RCTs include medical and lifestyle interventions and promote social, mental, and physical activities aimed at increasing the cognitive reserve. These studies will provide new insights into prevention of cognitive impairment and dementia. Such knowledge can help researchers plan larger, international prevention trials that could provide robust evidence on dementia/AD prevention. Taking a step in this direction, researchers involved in these European RCTs recently started the European Dementia Prevention Initiative, an international collaboration aiming to improve strategies for preventing dementia.
PMCID: PMC3471409  PMID: 22339927
6.  Midlife Serum Cholesterol and Increased Risk of Alzheimer's and Vascular Dementia Three Decades Later 
To investigate midlife cholesterol in relation to Alzheimer's disease (AD) and vascular dementia (VaD) in a large multiethnic cohort of women and men.
The Kaiser Permanente Northern California Medical Group (healthcare delivery organization) formed the database for this study. The 9,844 participants underwent detailed health evaluations during 1964–1973 at ages 40–45 years; they were still members of the health plan in 1994. AD and VaD were ascertained by medical records between 1 January 1994 and 1 June 2007. Cox proportional hazards models – adjusted for age, education, race/ethnic group, sex, midlife diabetes, hypertension, BMI and late-life stroke – were conducted.
In total, 469 participants had AD and 127 had VaD. With desirable cholesterol levels (<200 mg/dl) as a reference, hazard ratios (HR) and 95% CI for AD were 1.23 (0.97–1.55) and 1.57 (1.23–2.01) for borderline (200–239 mg/dl) and high cholesterol (≥240 mg/dl), respectively. HR and 95% CI for VaD were 1.50 (1.01–2.23) for borderline and 1.26 (0.82–1.96) for high cholesterol. Further analyses for AD (cholesterol quartiles, 1st quartile reference) indicated that cholesterol levels >220 mg/dl were a significant risk factor: HR were 1.31 (1.01–1.71; 3rd quartile, 221–248 mg/dl) and 1.58 (1.22–2.06; 4th quartile, 249–500 mg/dl).
Midlife serum total cholesterol was associated with an increased risk of AD and VaD. Even moderately elevated cholesterol increased dementia risk. Dementia risk factors need to be addressed as early as midlife, before underlying disease(s) or symptoms appear.
PMCID: PMC2814023  PMID: 19648749
Dementia; Epidemiology; Alzheimer's dementia; Cholesterol; Vascular dementia
7.  Cerebral embolism and Alzheimer's disease 
BMJ : British Medical Journal  2006;332(7550):1104-1105.
PMCID: PMC1459591  PMID: 16690644

Results 1-7 (7)