PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (52)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Executive Dysfunction 
Continuum : Lifelong Learning in Neurology  2015;21(3 Behavioral Neurology and Neuropsychiatry):646-659.
Purpose of Review:
Executive functions represent a constellation of cognitive abilities that drive goal-oriented behavior and are critical to the ability to adapt to an ever-changing world. This article provides a clinically oriented approach to classifying, localizing, diagnosing, and treating disorders of executive function, which are pervasive in clinical practice.
Recent Findings:
Executive functions can be split into four distinct components: working memory, inhibition, set shifting, and fluency. These components may be differentially affected in individual patients and act together to guide higher-order cognitive constructs such as planning and organization. Specific bedside and neuropsychological tests can be applied to evaluate components of executive function. While dysexecutive syndromes were first described in patients with frontal lesions, intact executive functioning relies on distributed neural networks that include not only the prefrontal cortex, but also the parietal cortex, basal ganglia, thalamus, and cerebellum. Executive dysfunction arises from injury to any of these regions, their white matter connections, or neurotransmitter systems. Dysexecutive symptoms therefore occur in most neurodegenerative diseases and in many other neurologic, psychiatric, and systemic illnesses. Management approaches are patient specific and should focus on treatment of the underlying cause in parallel with maximizing patient function and safety via occupational therapy and rehabilitation.
Summary:
Executive dysfunction is extremely common in patients with neurologic disorders. Diagnosis and treatment hinge on familiarity with the clinical components and neuroanatomic correlates of these complex, high-order cognitive processes.
doi:10.1212/01.CON.0000466658.05156.54
PMCID: PMC4455841  PMID: 26039846
2.  Distinct subtypes of behavioral-variant frontotemporal dementia based on patterns of network degeneration 
JAMA neurology  2016;73(9):1078-1088.
Importance
Clearer delineation of the phenotypic heterogeneity within behavioral variant frontotemporal dementia (bvFTD) will help uncover underlying biological mechanisms, and will improve clinicians’ ability to predict disease course and design targeted management strategies.
Objective
To identify subtypes of bvFTD syndrome based on distinctive patterns of atrophy defined by selective vulnerability of specific functional networks targeted in bvFTD, using statistical classification approaches.
Design, Setting and Participants
In this retrospective observational study, 104 patients meeting the Frontotemporal Dementia Consortium consensus criteria for bvFTD were evaluated at the Memory and Aging Center of Department of Neurology at University of California, San Francisco. Patients underwent a multidisciplinary clinical evaluation, including clinical demographics, genetic testing, symptom evaluation, neurological exam, neuropsychological bedside testing, and socioemotional assessments. Ninety patients underwent structural Magnetic Resonance Imaging at their earliest evaluation at the memory clinic. From each patients’ structural imaging, the mean volumes of 18 regions of interest (ROI) comprising the functional networks specifically vulnerable in bvFTD, including the ‘salience network’ (SN), with key nodes in the frontoinsula and pregenual anterior cingulate, and the ‘semantic appraisal network’ (SAN) anchored in the anterior temporal lobe and subgenual cingulate, were estimated. Principal component and cluster analyses of ROI volumes were used to identify patient clusters with anatomically distinct atrophy patterns.
Main Outcome Measures
We evaluated brain morphology and other clinical features including presenting symptoms, neurologic exam signs, neuropsychological performance, rate of dementia progression, and socioemotional function in each patient cluster.
Results
We identified four subgroups of bvFTD patients with distinct anatomic patterns of network degeneration, including two separate salience network–predominant subgroups: frontal/temporal (SN-FT), and frontal (SN-F), and a semantic appraisal network–predominant group (SAN), and a subcortical–predominant group. Subgroups demonstrated distinct patterns of cognitive, socioemotional, and motor symptoms, as well as genetic compositions and estimated rates of disease progression.
Conclusions
Divergent patterns of vulnerability in specific functional network components make an important contribution to clinical heterogeneity of bvFTD. The data-driven anatomical classification identifies biologically meaningful phenotypes and provides a replicable approach to disambiguate the bvFTD syndrome.
doi:10.1001/jamaneurol.2016.2016
PMCID: PMC5024785  PMID: 27429218
3.  The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features 
Brain  2015;138(9):2732-2749.
Relatively little is known about behavioural- and dysexecutive-predominant presentations of Alzheimer’s disease, collectively known as ‘frontal’ Alzheimer’s disease. Ossenkoppele et al. compare these two syndromes, revealing classical temporoparietal atrophy and relative sparing of frontal cortex in both, and propose that they are redefined as the ‘behavioural/dysexecutive variant of Alzheimer’s disease’.
Relatively little is known about behavioural- and dysexecutive-predominant presentations of Alzheimer’s disease, collectively known as ‘frontal’ Alzheimer’s disease. Ossenkoppele et al. compare these two syndromes, revealing classical temporoparietal atrophy and relative sparing of frontal cortex in both, and propose that they are redefined as the ‘behavioural/dysexecutive variant of Alzheimer’s disease’.
A ‘frontal variant of Alzheimer’s disease’ has been described in patients with predominant behavioural or dysexecutive deficits caused by Alzheimer’s disease pathology. The description of this rare Alzheimer’s disease phenotype has been limited to case reports and small series, and many clinical, neuroimaging and neuropathological characteristics are not well understood. In this retrospective study, we included 55 patients with Alzheimer’s disease with a behavioural-predominant presentation (behavioural Alzheimer’s disease) and a neuropathological diagnosis of high-likelihood Alzheimer’s disease (n = 17) and/or biomarker evidence of Alzheimer’s disease pathology (n = 44). In addition, we included 29 patients with autopsy/biomarker-defined Alzheimer’s disease with a dysexecutive-predominant syndrome (dysexecutive Alzheimer’s disease). We performed structured chart reviews to ascertain clinical features. First symptoms were more often cognitive (behavioural Alzheimer’s disease: 53%; dysexecutive Alzheimer’s disease: 83%) than behavioural (behavioural Alzheimer’s disease: 25%; dysexecutive Alzheimer’s disease: 3%). Apathy was the most common behavioural feature, while hyperorality and perseverative/compulsive behaviours were less prevalent. Fifty-two per cent of patients with behavioural Alzheimer’s disease met diagnostic criteria for possible behavioural-variant frontotemporal dementia. Overlap between behavioural and dysexecutive Alzheimer’s disease was modest (9/75 patients). Sixty per cent of patients with behavioural Alzheimer’s disease and 40% of those with the dysexecutive syndrome carried at least one APOE ε4 allele. We also compared neuropsychological test performance and brain atrophy (applying voxel-based morphometry) with matched autopsy/biomarker-defined typical (amnestic-predominant) Alzheimer’s disease (typical Alzheimer’s disease, n = 58), autopsy-confirmed/Alzheimer’s disease biomarker-negative behavioural variant frontotemporal dementia (n = 59), and controls (n = 61). Patients with behavioural Alzheimer’s disease showed worse memory scores than behavioural variant frontotemporal dementia and did not differ from typical Alzheimer’s disease, while executive function composite scores were lower compared to behavioural variant frontotemporal dementia and typical Alzheimer’s disease. Voxel-wise contrasts between behavioural and dysexecutive Alzheimer’s disease patients and controls revealed marked atrophy in bilateral temporoparietal regions and only limited atrophy in the frontal cortex. In direct comparison with behavioural and those with dysexecutive Alzheimer’s disease, patients with behavioural variant frontotemporal dementia showed more frontal atrophy and less posterior involvement, whereas patients with typical Alzheimer’s disease were slightly more affected posteriorly and showed less frontal atrophy (P < 0.001 uncorrected). Among 24 autopsied behavioural Alzheimer’s disease/dysexecutive Alzheimer’s disease patients, only two had primary co-morbid FTD-spectrum pathology (progressive supranuclear palsy). In conclusion, behavioural Alzheimer’s disease presentations are characterized by a milder and more restricted behavioural profile than in behavioural variant frontotemporal dementia, co-occurrence of memory dysfunction and high APOE ε4 prevalence. Dysexecutive Alzheimer’s disease presented as a primarily cognitive phenotype with minimal behavioural abnormalities and intermediate APOE ε4 prevalence. Both behavioural Alzheimer’s disease and dysexecutive Alzheimer’s disease presentations are distinguished by temporoparietal-predominant atrophy. Based on the relative sparing of frontal grey matter, we propose to redefine these clinical syndromes as ‘the behavioural/dysexecutive variant of Alzheimer’s disease’ rather than frontal variant Alzheimer’s disease. Further work is needed to determine whether behavioural and dysexecutive-predominant presentations of Alzheimer’s disease represent distinct phenotypes or a single continuum.
doi:10.1093/brain/awv191
PMCID: PMC4623840  PMID: 26141491
Alzheimer’s disease; frontotemporal dementia; frontal, behaviour; executive function
4.  Diagnostic utility of ASL‐MRI and FDG‐PET in the behavioral variant of FTD and AD 
Abstract
Objective
To compare the values of arterial spin‐labeled (ASL) MRI and fluorodeoxyglucose (FDG) PET in the diagnosis of behavioral variant of frontotemporal dementia (bvFTD) and Alzheimer's disease (AD).
Methods
Partial least squares logistic regression was used to identify voxels with diagnostic value in cerebral blood flow (CBF) and cerebral metabolic rate of glucose (CMRgl) maps from patients with bvFTD (n = 32) and AD (n = 28), who were compared with each other and with cognitively normal controls (CN, n = 15). Diagnostic values of these maps were compared with each other.
Results
Regions that differentiated each disorder from controls were similar for CBF and CMRgl. For differentiating AD from CN, the areas under the curve (AUC) for CBF (0.89) and CMRgl (0.91) were similar, with similar sensitivity (CBF: 86%, CMRgl: 78%) and specificity (CBF: 92%, CMRgl: 100%). Likewise, for differentiating bvFTD from CN performances of CBF (AUC = 0.83) and CMRgl (AUC = 0.85) were equivalent, with similar sensitivity (CBF: 78%, CMRgl: 79%) and specificity (CBF: 92%, CMRgl: 100%). In differentiating bvFTD from AD, classification was again similar for CBF (AUC = 0.87) and CMRgl (AUC = 0.79), as were sensitivity (CBF: 83%, CMRgl: 89%) and specificity (CBF: 93%, CMRgl: 78%). None of the differences in any performance measure were statistically significant.
Interpretation
ASL‐MRI has similar diagnostic utility as FDG‐PET in the diagnosis of AD and bvFTD. Continued development of ASL‐MRI as a diagnostic tool for neurodegenerative dementias is warranted.
doi:10.1002/acn3.330
PMCID: PMC5048385  PMID: 27752510
5.  Evaluating and treating neurobehavioral symptoms in professional American football players 
Neurology: Clinical Practice  2015;5(4):285-295.
Summary
In the aftermath of multiple high-profile cases of chronic traumatic encephalopathy (CTE) in professional American football players, physicians in clinical practice are likely to face an increasing number of retired football players seeking evaluation for chronic neurobehavioral symptoms. Guidelines for the evaluation and treatment of these patients are sparse. Clinical criteria for a diagnosis of CTE are under development. The contribution of CTE vs other neuropathologies to neurobehavioral symptoms in these players remains unclear. Here we describe the experience of our academic memory clinic in evaluating and treating a series of 14 self-referred symptomatic players. Our aim is to raise awareness in the neurology community regarding the different clinical phenotypes, idiosyncratic but potentially treatable symptoms, and the spectrum of underlying neuropathologies in these players.
doi:10.1212/CPJ.0000000000000157
PMCID: PMC4549717  PMID: 26336629
6.  Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy 
Neurobiology of aging  2016;44:108-113.
Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes.
doi:10.1016/j.neurobiolaging.2016.04.012
PMCID: PMC4926954  PMID: 27318138
Posterior cortical atrophy; Age at onset; Neuroimaging; Cortical thickness; Atypical Alzheimer disease
7.  Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease 
Alzheimer's & Dementia  2016;12(8):862-871.
Introduction
The genetics underlying posterior cortical atrophy (PCA), typically a rare variant of Alzheimer's disease (AD), remain uncertain.
Methods
We genotyped 302 PCA patients from 11 centers, calculated risk at 24 loci for AD/DLB and performed an exploratory genome-wide association study.
Results
We confirm that variation in/near APOE/TOMM40 (P = 6 × 10−14) alters PCA risk, but with smaller effect than for typical AD (PCA: odds ratio [OR] = 2.03, typical AD: OR = 2.83, P = .0007). We found evidence for risk in/near CR1 (P = 7 × 10−4), ABCA7 (P = .02) and BIN1 (P = .04). ORs at variants near INPP5D and NME8 did not overlap between PCA and typical AD. Exploratory genome-wide association studies confirmed APOE and identified three novel loci: rs76854344 near CNTNAP5 (P = 8 × 10−10 OR = 1.9 [1.5–2.3]); rs72907046 near FAM46A (P = 1 × 10−9 OR = 3.2 [2.1–4.9]); and rs2525776 near SEMA3C (P = 1 × 10−8, OR = 3.3 [2.1–5.1]).
Discussion
We provide evidence for genetic risk factors specifically related to PCA. We identify three candidate loci that, if replicated, may provide insights into selective vulnerability and phenotypic diversity in AD.
doi:10.1016/j.jalz.2016.01.010
PMCID: PMC4982482  PMID: 26993346
Posterior cortical atrophy; Alzheimer's disease; Genetics; GWAS; Selective vulnerability; APOE
8.  Associations Between Alzheimer Disease Biomarkers, Neurodegeneration, and Cognition in Cognitively Normal Older People 
JAMA neurology  2013;70(12):1512-1519.
Importance
Criteria for preclinical Alzheimer disease (AD) propose β-amyloid (Aβ) plaques to initiate neurodegeneration within AD-affected regions. However, some cognitively normal older individuals harbor neural injury similar to patients with AD, without concurrent Aβ burden. Such findings challenge the proposed sequence and suggest that Aβ-independent precursors underlie AD-typical neurodegenerative patterns.
Objective
To examine relationships between Aβ and non-Aβ factors as well as neurodegeneration within AD regions in cognitively normal older adults. The study quantified neurodegenerative abnormalities using imaging biomarkers and examined cross-sectional relationships with Aβ deposition; white matter lesions (WMLs), a marker of cerebrovascular disease; and cognitive functions.
Design, Setting, and Participants
Cross-sectional study in a community-based convenience sample of 72 cognitively normal older individuals (mean [SD] age, 74.9 [5.7] years; 48 women; mean [SD] 17.0 [1.9] years of education) of the Berkeley Aging Cohort.
Intervention
Each individual underwent a standardized neuropsychological test session, magnetic resonance imaging, and positron emission tomography scanning.
Main Outcomes and Measures
For each individual, 3 AD-sensitive neurodegeneration biomarkers were measured: hippocampal volume, glucose metabolism, and gray matter thickness, the latter 2 sampled from cortical AD-affected regions. To quantify neurodegenerative abnormalities, each biomarker was age adjusted, dichotomized into a normal or abnormal status (using cutoff thresholds derived from an independent AD sample), and summarized into 0, 1, or more than 1 abnormal neurodegenerative biomarker. Degree and topographic patterns of neurodegenerative abnormalities were assessed and their relationships with cognitive functions, WML volume, and Aβ deposition (quantified using carbon 11-labeled Pittsburgh compound B positron emission tomography).
Results
Of our cognitively normal elderly individuals, 40% (n = 29) displayed at least 1 abnormal neurodegenerative biomarker, 26% (n = 19) of whom had no evidence of elevated Pittsburgh compound B retention. In those people who were classified as having abnormal cortical thickness, degree and topographic specificity of neurodegenerative abnormalities were similar to patients with AD. Accumulation of neurodegenerative abnormalities was related to poor memory and executive functions as well as larger WML volumes but not elevated Pittsburgh compound B retention.
Conclusions and Relevance
Our study confirms that a substantial proportion of cognitively normal older adults harbor neurodegeneration, without Aβ burden. Associations of neurodegenerative abnormalities with cerebrovascular disease and cognitive performance indicate that neurodegenerative pathology can emerge through non-Aβ pathways within regions most affected by AD.
doi:10.1001/jamaneurol.2013.4013
PMCID: PMC4962545  PMID: 24166579
9.  Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation 
Brain  2015;138(7):2020-2033.
Amyloid, a hallmark of Alzheimer’s disease, accumulates long before the onset of dementia, and can be detected in-vivo using PET imaging. Villeneuve et al. map the pattern of amyloid accumulation, and argue that the thresholds used to classify subjects as being amyloid-positive could be lowered without compromising specificity.
Amyloid, a hallmark of Alzheimer’s disease, accumulates long before the onset of dementia, and can be detected in-vivo using PET imaging. Villeneuve et al. map the pattern of amyloid accumulation, and argue that the thresholds used to classify subjects as being amyloid-positive could be lowered without compromising specificity.
Amyloid-β, a hallmark of Alzheimer’s disease, begins accumulating up to two decades before the onset of dementia, and can be detected in vivo applying amyloid-β positron emission tomography tracers such as carbon-11-labelled Pittsburgh compound-B. A variety of thresholds have been applied in the literature to define Pittsburgh compound-B positron emission tomography positivity, but the ability of these thresholds to detect early amyloid-β deposition is unknown, and validation studies comparing Pittsburgh compound-B thresholds to post-mortem amyloid burden are lacking. In this study we first derived thresholds for amyloid positron emission tomography positivity using Pittsburgh compound-B positron emission tomography in 154 cognitively normal older adults with four complementary approaches: (i) reference values from a young control group aged between 20 and 30 years; (ii) a Gaussian mixture model that assigned each subject a probability of being amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B index uptake; (iii) a k-means cluster approach that clustered subjects into amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B uptake in different brain regions (features); and (iv) an iterative voxel-based analysis that further explored the spatial pattern of early amyloid-β positron emission tomography signal. Next, we tested the sensitivity and specificity of the derived thresholds in 50 individuals who underwent Pittsburgh compound-B positron emission tomography during life and brain autopsy (mean time positron emission tomography to autopsy 3.1 ± 1.8 years). Amyloid at autopsy was classified using Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria, unadjusted for age. The analytic approaches yielded low thresholds (standard uptake value ratiolow = 1.21, distribution volume ratiolow = 1.08) that represent the earliest detectable Pittsburgh compound-B signal, as well as high thresholds (standard uptake value ratiohigh = 1.40, distribution volume ratiohigh = 1.20) that are more conservative in defining Pittsburgh compound-B positron emission tomography positivity. In voxel-wise contrasts, elevated Pittsburgh compound-B retention was first noted in the medial frontal cortex, then the precuneus, lateral frontal and parietal lobes, and finally the lateral temporal lobe. When compared to post-mortem amyloid burden, low proposed thresholds were more sensitive than high thresholds (sensitivities: distribution volume ratiolow 81.0%, standard uptake value ratiolow 83.3%; distribution volume ratiohigh 61.9%, standard uptake value ratiohigh 62.5%) for CERAD moderate-to-frequent neuritic plaques, with similar specificity (distribution volume ratiolow 95.8%; standard uptake value ratiolow, distribution volume ratiohigh and standard uptake value ratiohigh 100.0%). A receiver operator characteristic analysis identified optimal distribution volume ratio (1.06) and standard uptake value ratio (1.20) thresholds that were nearly identical to the a priori distribution volume ratiolow and standard uptake value ratiolow. In summary, we found that frequently applied thresholds for Pittsburgh compound-B positivity (typically at or above distribution volume ratiohigh and standard uptake value ratiohigh) are overly stringent in defining amyloid positivity. Lower thresholds in this study resulted in higher sensitivity while not compromising specificity.
doi:10.1093/brain/awv112
PMCID: PMC4806716  PMID: 25953778
Alzheimer's disease; dementia; biomarkers; neurodegeneration; beta-amyloid
10.  MCP-1 and eotaxin-1 selectively and negatively associate with memory in MCI and Alzheimer's disease dementia phenotypes 
Introduction
MCP-1 and eotaxin-1 are encoded on chromosome 17 and have been shown to reduce hippocampal neurogenesis in mice. We investigated whether these chemokines selectively associate with memory in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia.
Methods
MCP-1 and eotaxin-1 were assayed in controls, MCI, and AD dementia patients with varying phenotypes (n = 171). A subset of 55 individuals had magnetic resonance imaging (MRI) scans available. Composite scores for cognitive variables were created, and medial temporal lobe volumes were obtained.
Results
An interaction was noted between MCP-1 and eotaxin-1, such that deleterious associations with memory were seen when both chemokines were elevated. These associations remained significant after adding APOE genotype and comparison (non-chromosome 17) chemokines into the model. These chemokines predicted left medial temporal lobe volume and were not related to other cognitive domains.
Discussion
These results suggest a potentially selective role for MCP-1 and eotaxin-1 in memory dysfunction in the context of varied MCI and AD dementia phenotypes.
doi:10.1016/j.dadm.2016.05.004
PMCID: PMC4941041  PMID: 27453930
Inflammation; Neuropsychology; Chemokines; Neuroimaging; Episodic memory
11.  Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease 
JAMA neurology  2016;73(6):691-697.
IMPORTANCE
Late-onset Alzheimer disease (AD), the most common form of dementia, places a large burden on families and society. Although epidemiological and clinical evidence suggests a relationship between inflammation and AD, their relationship is not well understood and could have implications for treatment and prevention strategies.
OBJECTIVE
To determine whether a subset of genes involved with increased risk of inflammation are also associated with increased risk for AD.
DESIGN, SETTING, AND PARTICIPANTS
In a genetic epidemiology study conducted in July 2015, we systematically investigated genetic overlap between AD (International Genomics of Alzheimer’s Project stage 1) and Crohn disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, and psoriasis using summary data from genome-wide association studies at multiple academic clinical research centers. P values and odds ratios from genome-wide association studies of more than 100 000 individuals were from previous comparisons of patients vs respective control cohorts. Diagnosis for each disorder was previously established for the parent study using consensus criteria.
MAIN OUTCOMES AND MEASURES
The primary outcome was the pleiotropic (conjunction) false discovery rate P value. Follow-up for candidate variants included neuritic plaque and neurofibrillary tangle pathology; longitudinal Alzheimer’s Disease Assessment Scale cognitive subscale scores as a measure of cognitive dysfunction (Alzheimer’s Disease Neuroimaging Initiative); and gene expression in AD vs control brains (Gene Expression Omnibus data).
RESULTS
Eight single-nucleotide polymorphisms (false discovery rate P < .05) were associated with both AD and immune-mediated diseases. Of these, rs2516049 (closest gene HLA-DRB5; conjunction false discovery rate P = .04 for AD and psoriasis, 5.37 × 10−5 for AD, and 6.03 × 10−15 for psoriasis) and rs12570088 (closest gene IPMK; conjunction false discovery rate P = .009 for AD and Crohn disease, P = 5.73 × 10−6 for AD, and 6.57 × 10−5 for Crohn disease) demonstrated the same direction of allelic effect between AD and the immune-mediated diseases. Both rs2516049 and rs12570088 were significantly associated with neurofibrillary tangle pathology (P = .01352 and .03151, respectively); rs2516049 additionally correlated with longitudinal decline on Alzheimer’s Disease Assessment Scale cognitive subscale scores (β [SE], 0.405 [0.190]; P = .03). Regarding gene expression, HLA-DRA and IPMK transcript expression was significantly altered in AD brains compared with control brains (HLA-DRA: β [SE], 0.155 [0.024]; P = 1.97 × 10−10; IPMK: β [SE], −0.096 [0.013]; P = 7.57 × 10−13).
CONCLUSIONS AND RELEVANCE
Our findings demonstrate genetic overlap between AD and immune-mediated diseases and suggest that immune system processes influence AD pathogenesis and progression.
doi:10.1001/jamaneurol.2016.0150
PMCID: PMC4905783  PMID: 27088644
12.  Loss of functional connectivity is greater outside the default mode network in non-familial early-onset Alzheimer’s disease variants 
Neurobiology of aging  2015;36(10):2678-2686.
The common and specific involvement of brain networks in clinical variants of Alzheimer’s disease (AD) is not well understood. We performed task-free (“resting-state”) functional imaging in 60 non-familial AD patients, including 20 early-onset AD (EOAD, age at onset <65 years, amnestic/dysexecutive deficits), 24 logopenic aphasia (lvPPA, language deficits) and 16 posterior cortical atrophy patients (PCA, visual deficits), as well as 60 healthy controls. Seed-based connectivity analyses were conducted to assess differences between groups in 3 default mode network (DMN) components (anterior, posterior and ventral) and four additional non-DMN networks: left and right executive-control, language and higher visual networks. Significant decreases in connectivity were found across AD variants compared with controls in the non-DMN networks. Within the DMN components, patients showed higher connectivity in the anterior DMN, in particular in lvPPA. No significant differences were found for the posterior and ventral DMN. Our findings suggest that loss of functional connectivity is greatest in networks outside the DMN in early-onset and non-amnestic AD variants, and may thus be a better biomarker in these patients.
doi:10.1016/j.neurobiolaging.2015.06.029
PMCID: PMC4698410  PMID: 26242705
Networks; intrinsic connectivity; functional magnetic resonance imaging; Alzheimer’s disease; posterior cortical atrophy; logopenic-variant primary progressive aphasia
13.  Atrophy Patterns in Early Clinical Stages Across Distinct Phenotypes of Alzheimer’s Disease 
Human brain mapping  2015;36(11):4421-4437.
Alzheimer’s disease (AD) can present with distinct clinical variants. Identifying the earliest neurodegenerative changes associated with each variant has implications for early diagnosis, and for understanding the mechanisms that underlie regional vulnerability and disease progression in AD. We performed voxel-based morphometry to detect atrophy patterns in early clinical stages of four AD phenotypes: Posterior cortical atrophy (PCA, “visual variant,” n = 93), logopenic variant primary progressive aphasia (lvPPA, “language variant,” n = 74), and memory-predominant AD categorized as early age-of-onset (EOAD, <65 years, n = 114) and late age-of-onset (LOAD, >65 years, n = 114). Patients with each syndrome were stratified based on: (1) degree of functional impairment, as measured by the clinical dementia rating (CDR) scale, and (2) overall extent of brain atrophy, as measured by a neuroimaging approach that sums the number of brain voxels showing significantly lower gray matter volume than cognitively normal controls (n = 80). Even at the earliest clinical stage (CDR =0.5 or bottom quartile of overall atrophy), patients with each syndrome showed both common and variant-specific atrophy. Common atrophy across variants was found in temporoparietal regions that comprise the posterior default mode network (DMN). Early syndrome-specific atrophy mirrored functional brain networks underlying functions that are uniquely affected in each variant: Language network in lvPPA, posterior cingulate cortex-hippocampal circuit in amnestic EOAD and LOAD, and visual networks in PCA. At more advanced stages, atrophy patterns largely converged across AD variants. These findings support a model in which neurodegeneration selectively targets both the DMN and syndrome-specific vulnerable networks at the earliest clinical stages of AD.
doi:10.1002/hbm.22927
PMCID: PMC4692964  PMID: 26260856
Alzheimer’s disease; magnetic resonance imaging (MRI); posterior cortical atrophy; logopenic variant primary progressive aphasia; early-onset dementia; default mode network; language; memory; vision; atrophy; voxel-based morphometry
14.  Prevalence of Amyloid PET Positivity in Dementia Syndromes 
JAMA  2015;313(19):1939-1949.
IMPORTANCE
Amyloid-β positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non–AD dementia.
OBJECTIVE
To use individual participant data meta-analysis to estimate the prevalence of amyloid positivity on PET in a wide variety of dementia syndromes.
DATA SOURCES
The MEDLINE and Web of Science databases were searched from January 2004 to April 2015 for amyloid PET studies.
STUDY SELECTION
Case reports and studies on neurological or psychiatric diseases other than dementia were excluded. Corresponding authors of eligible cohorts were invited to provide individual participant data.
DATA EXTRACTION AND SYNTHESIS
Data were provided for 1359 participants with clinically diagnosed AD and 538 participants with non–AD dementia. The reference groups were 1849 healthy control participants (based on amyloid PET) and an independent sample of 1369 AD participants (based on autopsy).
MAIN OUTCOMES AND MEASURES
Estimated prevalence of positive amyloid PET scans according to diagnosis, age, and apolipoprotein E (APOE) ε4 status, using the generalized estimating equations method.
RESULTS
The likelihood of amyloid positivity was associated with age and APOE ε4 status. In AD dementia, the prevalence of amyloid positivity decreased from age 50 to 90 years in APOE ε4 noncarriers(86%[95%CI,73%–94%]at 50 years to 68% [95% CI,57%–77%] at 90 years; n = 377) and to a lesser degree in APOE ε4 carriers (97% [95% CI, 92%–99%] at 50 years to 90% [95% CI, 83%–94%] at 90 years; n = 593; P < .01). Similar associations of age and APOE ε4 with amyloid positivity were observed in participants with AD dementia at autopsy. In most non–AD dementias, amyloid positivity increased with both age (from 60 to 80 years) and APOE ε4 carriership. Total ParticipantsAmyloid Positivity, % (95% CI) Age 60 yAge 80 y Dementia with Lewy bodies  emsp;APOE ε4 carrier  1663 (48–80)83 (67–92)  emsp;APOE ε4 noncarrier  1829 (15–50)54 (30–77) Frontotemporal dementia  emsp;APOE ε4 carrier  4819 (12–28)43 (35–50)  emsp;APOE ε4 noncarrier160  5 (3–8)14 (11–18) Vascular dementia  emsp;APOE ε4 carrier  3025 (9–52)64 (49–77)  emsp;APOE ε4 noncarrier  77  7 (3–18)29 (17–43)
CONCLUSIONS AND RELEVANCE
Among participants with dementia, the prevalence of amyloid positivity was associated with clinical diagnosis, age, and APOE genotype. These findings indicate the potential clinical utility of amyloid imaging for differential diagnosis in early-onset dementia and to support the clinical diagnosis of participants with AD dementia and noncarrier APOE ε4 status who are older than 70 years.
doi:10.1001/jama.2015.4669
PMCID: PMC4517678  PMID: 25988463
15.  Cerebrospinal Fluid Biomarkers and Cerebral Atrophy in Distinct Clinical Variants of Probable Alzheimer’s Disease 
Neurobiology of aging  2015;36(8):2340-2347.
Different clinical variants of probable Alzheimer’s disease (AD) share underlying plaques and tangles but show distinct atrophy patterns. We included 52 posterior cortical atrophy (PCA), 29 logopenic variant primary progressive aphasia (lvPPA), 53 early-onset (EOAD) and 42 late-onset AD (LOAD) patients, selected for abnormal CSF-Aβ42, with CSF and MRI data available. Bootstrapping revealed no differences in the prevalence of abnormal CSF total-tau and phosphorylated-tau between probable AD variants (range total-tau: 84.9–92.3%, phosphorylated-tau: 79.2–93.1%, p>0.05). Voxel-wise linear regressions showed various relationships between lower CSF-Aβ42 and syndrome-specific atrophy, involving precuneus, posterior cingulate, and medial temporal lobe (MTL) in EOAD, occipital cortex and middle temporal gyrus in PCA; anterior cingulate, insular cortex and precentral gyrus (left>right) in lvPPA; and MTL, thalamus, and temporal pole in LOAD (all at p<0.001 uncorrected). In contrast, CSF-tau was not related to gray matter atrophy in any group. Our findings suggest that lower CSF-Aβ42 – and not increased total-tau and phosphorylated-tau – relates to reduced gray matter volumes, mostly in regions that are typically atrophied in distinct clinical variants of probable AD.
doi:10.1016/j.neurobiolaging.2015.04.011
PMCID: PMC4465267  PMID: 25990306
Alzheimer’s disease; cerebrospinal fluid; magnetic resonance imaging; amyloid; tau; atrophy
16.  Clinical use of amyloid-positron emission tomography neuroimaging: Practical and bioethical considerations 
Until recently, estimation of β-amyloid plaque density as a key element for identifying Alzheimer's disease (AD) pathology as the cause of cognitive impairment was only possible at autopsy. Now with amyloid-positron emission tomography (amyloid-PET) neuroimaging, this AD hallmark can be detected antemortem. Practitioners and patients need to better understand potential diagnostic benefits and limitations of amyloid-PET and the complex practical, ethical, and social implications surrounding this new technology. To complement the practical considerations, Eli Lilly and Company sponsored a Bioethics Advisory Board to discuss ethical issues that might arise from clinical use of amyloid-PET neuroimaging with patients being evaluated for causes of cognitive decline. To best address the multifaceted issues associated with amyloid-PET neuroimaging, we recommend this technology be used only by experienced imaging and treating physicians in appropriately selected patients and only in the context of a comprehensive clinical evaluation with adequate explanations before and after the scan.
doi:10.1016/j.dadm.2015.06.006
PMCID: PMC4878065  PMID: 27239516
Alzheimer's disease; Mild cognitive impairment; Bioethics in neurology; Positron emission tomography; Diagnostic use; Dementia; Biomarkers; Amyloid-β
17.  Amyloid imaging, risk disclosure and Alzheimer’s disease: ethical and practical issues 
SUMMARY
PET ligands that bind with high specificity to amyloid plaques represent a major breakthrough in Alzheimer’s disease (AD) research. Amyloid neuroimaging is now approved by the US FDA to aid in the diagnosis of AD, and is being used to identify amyloid-positive but asymptomatic individuals for secondary AD prevention trials. The use of amyloid neuroimaging in preclinical populations raises important ethical and practical challenges, including determining appropriate uses of this technology, evaluating the potential benefits and harms of disclosing results, and communicating effectively about testing with patients and family members. Emerging policy issues also require consideration (e.g., legal safeguards for biomarker-positive individuals). Further research is needed to inform effective and ethical implementation and regulation of amyloid imaging.
doi:10.2217/nmt.13.25
PMCID: PMC4498486  PMID: 26167204
18.  Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden 
Brain  2010;133(2):512-528.
Patients with early age-of-onset Alzheimer’s disease show more rapid progression, more generalized cognitive deficits and greater cortical atrophy and hypometabolism compared to late-onset patients at a similar disease stage. The biological mechanisms that underlie these differences are not well understood. The purpose of this study was to examine in vivo whether metabolic differences between early-onset and late-onset Alzheimer’s disease are associated with differences in the distribution and burden of fibrillar amyloid-β. Patients meeting criteria for probable Alzheimer’s disease (National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's; Disease and Related Disorders Association criteria) were divided based on estimated age at first symptom (less than or greater than 65 years) into early-onset (n = 21, mean age-at-onset 55.2 ± 5.9 years) and late-onset (n = 18, 72.0 ± 4.7 years) groups matched for disease duration and severity. Patients underwent positron emission tomography with the amyloid-β-ligand [11C]-labelled Pittsburgh compound-B and the glucose analogue [18F]-labelled fluorodeoxyglucose. A group of cognitively normal controls (n = 30, mean age 73.7 ± 6.4) was studied for comparison. [11C]-labelled Pittsburgh compound-B images were analysed using Logan graphical analysis (cerebellar reference) and [18F]-labelled fluorodeoxyglucose images were normalized to mean activity in the pons. Group differences in tracer uptake were assessed on a voxel-wise basis using statistical parametric mapping, and by comparing mean values in regions of interest. To account for brain atrophy, analyses were repeated after applying partial volume correction to positron emission tomography data. Compared to normal controls, both early-onset and late-onset Alzheimer’s disease patient groups showed increased [11C]-labelled Pittsburgh compound-B uptake throughout frontal, parietal and lateral temporal cortices and striatum on voxel-wise and region of interest comparisons (P < 0.05). However, there were no significant differences in regional or global [11C]-labelled Pittsburgh compound-B binding between early-onset and late-onset patients. In contrast, early-onset patients showed significantly lower glucose metabolism than late-onset patients in precuneus/posterior cingulate, lateral temporo–parietal and occipital corticies (voxel-wise and region of interest comparisons, P < 0.05). Similar results were found for [11C]-labelled Pittsburgh compound-B and [18F]-labelled fluorodeoxyglucose using atrophy-corrected data. Age-at-onset correlated positively with glucose metabolism in precuneus, lateral parietal and occipital regions of interest (controlling for age, education and Mini Mental State Exam, P < 0.05), while no correlations were found between age-at-onset and [11C]-labelled Pittsburgh compound-B binding. In summary, a comparable burden of fibrillar amyloid-β was associated with greater posterior cortical hypometabolism in early-onset Alzheimer’s disease. Our data are consistent with a model in which both early amyloid-β accumulation and increased vulnerability to amyloid-β pathology play critical roles in the pathogenesis of Alzheimer’s disease in young patients.
doi:10.1093/brain/awp326
PMCID: PMC2858015  PMID: 20080878
Alzheimer’s disease; age of onset; amyloid-β; [18F]-labelled fluorodeoxyglucose; [11C]-labelled Pittsburgh compound-B
19.  A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques 
Introduction
Although TDP-43 is the main constituent of the ubiquitinated cytoplasmic inclusions in the most common forms of frontotemporal lobar degeneration, TARDBP mutations are not a common cause of familial frontotemporal dementia, especially in the absence of motor neuron disease.
Results
We describe a pedigree presenting with a complex autosomal dominant disease, with a heterogeneous clinical phenotype, comprising unspecified dementia, parkinsonism, frontotemporal dementia and motor neuron disease. Genetic analyses identified a novel P112H TARDBP double variation located in exon 3 coding for the first RNA recognition motif of the protein (RRM1). This double mutation is probably pathogenic based on neuropathological findings, in silico prediction analysis and exome sequencing. The two autopsied siblings described here presented with frontotemporal dementia involving multiple cognitive domains and behavior but lacking symptoms of motor neuron disease throughout the disease course. The siblings presented with strikingly similar, although atypical, neuropathological features, including an unclassifiable TDP-43 inclusion pattern, a high burden of tau-negative β-amyloid neuritic plaques with an AD-like biochemical profile, and an unclassifiable 4-repeat tauopathy. The co-occurrence of multiple protein inclusions points to a pathogenic mechanism that facilitates misfolded protein interaction and aggregation or a loss of TDP-43 function that somehow impairs protein clearance.
Conclusions
TARDBP mutation screening should be considered in familial frontotemporal dementia cases, even without signs or symptoms of motor neuron disease, especially when other more frequent causes of genetic frontotemporal dementia (i.e. GRN, C9ORF72, MAPT) have been excluded and when family history is complex and includes parkinsonism, motor neuron disease and frontotemporal dementia. Further investigations in this family may provide insight into the physiological functions of TARDBP.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-015-0190-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s40478-015-0190-6
PMCID: PMC4382926  PMID: 25853458
Frontotemporal lobar degeneration; Frontotemporal dementia; Motor neuron disease; TDP-43; TARDBP; Postmortem
20.  Tau, Amyloid, and Hypometabolism in a Patient with Posterior Cortical Atrophy 
Annals of neurology  2014;77(2):338-342.
Determining the relative contribution of amyloid plaques and neurofibrillary tangles to brain dysfunction in Alzheimer disease is critical for therapeutic approaches, but until recently could only be assessed at autopsy. We report a patient with posterior cortical atrophy (visual variant of Alzheimer disease) who was studied using the novel tau tracer [18F]AV-1451 in conjunction with [11C]Pittsburgh compound B (PIB; amyloid) and [18F]fluorodeoxyglucose (FDG) positron emission tomography. Whereas [11C]PIB bound throughout association neocortex, [18F]AV-1451 was selectively retained in posterior brain regions that were affected clinically and showed markedly reduced [18F]FDG uptake. This provides preliminary in vivo evidence that tau is more closely linked to hypometabolism and symptomatology than amyloid.
doi:10.1002/ana.24321
PMCID: PMC4382124  PMID: 25448043
21.  Blood protein predictors of brain amyloid for enrichment in clinical trials? 
Background
Measures of neocortical amyloid burden (NAB) identify individuals who are at substantially greater risk of developing Alzheimer's disease (AD). Blood-based biomarkers predicting NAB would have great utility for the enrichment of AD clinical trials, including large-scale prevention trials.
Methods
Nontargeted proteomic discovery was applied to 78 subjects from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing with a range of NAB values. Technical and independent replications were performed by immunoassay.
Results
Seventeen discovery candidates were selected for technical replication. α2-Macroglobulin, fibrinogen γ-chain (FGG), and complement factor H-related protein 1 were confirmed to be associated with NAB. In an independent cohort, FGG plasma levels combined with age predicted NAB had a sensitivity of 59% and specificity of 78%.
Conclusion
A single blood protein, FGG, combined with age, was shown to relate to NAB and therefore could have potential for enrichment of clinical trial populations.
doi:10.1016/j.dadm.2014.11.005
PMCID: PMC4876903  PMID: 27239491
Plasma; β amyloid; Proteomics; Alzheimer's disease; Biomarker; Fibrinogen γ-chain; Clinical trials
22.  Frontotemporal Lobar Degeneration 
CNS drugs  2010;24(5):375-398.
Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy.
The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathologic heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD genetics and molecular pathology make the prospect of biologically driven, disease-specific therapies for FTLD seem closer than ever.
doi:10.2165/11533100-000000000-00000
PMCID: PMC2916644  PMID: 20369906
23.  Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography 
Introduction
Group comparisons demonstrate greater visuospatial and memory deficits and temporoparietal-predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer’s disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) for predicting amyloid deposition (as a surrogate of Alzheimer’s disease neuropathology) in patients presenting with CBS.
Methods
In total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG-PET were classified based on the predominant atrophy/hypometabolism pattern (frontal or temporoparietal).
Results
A total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra-rater reliability (Cohen’s kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra-rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD).
Conclusions
Splitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal-predominant neuroimaging patterns are sensitive but not specific for AD.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-014-0093-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s13195-014-0093-y
PMCID: PMC4346122  PMID: 25733984
24.  Divergent CSF tau alterations in two common tauopathies: Alzheimer’s disease and Progressive Supranuclear Palsy 
Background
Elevated CSF tau is considered a biomarker of neuronal injury in newly developed Alzheimer’s disease (AD) and mild cognitive impairment (MCI) criteria. However, previous studies have failed to detect alterations of tau species in other primary tauopathies. We assessed CSF tau protein abnormalities in AD, a tauopathy with prominent Aβ pathology, and progressive supranuclear palsy (PSP), a primary tauopathy characterized by deposition of four microtubule binding repeat (4R) tau with minimal Aβ pathology.
Methods
26 normal control (NC), 37 AD, and 24 PSP patients participated in the study. AD and PSP were matched for severity using the clinical dementia rating sum of boxes (CDR-sb) scores. The INNO BIA AlzBio3 multiplex immunoassay was used to measure CSF Aβ, total tau, and ptau181. Additional, novel ELISAs targeting different N-terminal and central tau epitopes were developed to examine CSF tau components and to investigate interactions between diagnostic group, demographics, and genetic variables.
Results
PSP had lower CSF N-terminal and C-terminal tau concentrations than NC and AD measured with both the novel tau ELISAs and the standard AlzBio3 tau and ptau assays. AD had higher total tau and ptau levels than NC and PSP. There was a gender by diagnosis interaction in both AD and PSP for most tau species, with lower concentrations for male compared to female patients.
Conclusions
CSF tau fragment concentrations are different in PSP compared with AD despite the presence of severe tau pathology and neuronal injury in both disorders. CSF tau concentration likely reflects multiple factors in addition to the degree of neuronal injury.
doi:10.1136/jnnp-2014-308004
PMCID: PMC4256124  PMID: 24899730
Alzheimer’s disease; Progressive supranuclear palsy; CSF; Tau
25.  Prodromal Posterior Cortical Atrophy: Clinical, Neuropsychological and Radiological Correlation 
Neurocase  2013;21(1):44-55.
We present longitudinal clinical, cognitive and neuroimaging data from a 63-year-old woman who enrolled in research as a normal control and evolved posterior cortical atrophy (PCA) over five year follow-up. At baseline she reported only subtle difficulty driving and performed normally on cognitive tests, but already demonstrated atrophy in left visual association cortex. With follow-up she developed insidiously progressive visuospatial and visuoperceptual deficits, correlating with progressive atrophy in bilateral visual areas. Amyloid PET was positive. This case tracks the evolution of PCA from the prodromal stage, and illustrates challenges to early diagnosis as well as the utility of imaging biomarkers.
doi:10.1080/13554794.2013.860176
PMCID: PMC4318700  PMID: 24308559

Results 1-25 (52)