PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Regulation of dendritic cell functions against harmful respiratory pathogens by a cysteinyl leukotrienes receptor antagonist 
Allergy & Rhinology  2012;3(1):e30-e34.
Cysteinyl leukotriene receptor antagonist (LTRA) is a widely used medicine for asthma. Cysteinyl leukotrienes (cysLTs) are involved in the regulation of dendritic cell (DC) function. However, the effects of LTRA on DC-related antimicrobial immunity against harmful respiratory pathogens remain unknown. The purpose of this study was to examine the effects of LTRA administered in vivo on DC function against representative respiratory pathogens in vitro. Pulmonary DCs were isolated from four groups of mice: control, mite allergen sensitized (AS), and AS mice treated with the corticosteroid dexamethasone (Dex) or with the LTRA pranlukast (Prl). These DCs were incubated with mite allergen, lipopolysaccharide (LPS), Aspergillus fumigatus, or respiratory syncytial virus (RSV). IL-10 and IL-12 production was then determined. Dex treatment significantly inhibited lipopolysaccharide (LPS)-induced IL-10 and IL-12 production as well as baseline IL-12 production in AS mice. The Prl did not significantly inhibit LPS-induced IL-10 and IL-12 production in AS mice. More importantly, Prl significantly increased IL-10 and IL-12 in AS mice after RSV infection. This study shows that LTRA that is used for asthma potentially up-regulates antimicrobial immunity through modulation of DC function against some respiratory infections without immunosuppression.
doi:10.2500/ar.2012.3.0021
PMCID: PMC3404475  PMID: 22852127
Allergic airway inflammation; Aspergillus fumigatus; asthma; corticosteroids; cysteinyl leukotrienes receptor antagonist; cytokines; dendritic cell; Dermatophagoides farinae; lipopolysaccharide; respiratory syncytial virus
2.  An Essential Role of the Universal Polarity Protein, aPKCλ, on the Maintenance of Podocyte Slit Diaphragms 
PLoS ONE  2009;4(1):e4194.
Glomerular visceral epithelial cells (podocytes) contain interdigitated processes that form specialized intercellular junctions, termed slit diaphragms, which provide a selective filtration barrier in the renal glomerulus. Analyses of disease-causing mutations in familial nephrotic syndromes and targeted mutagenesis in mice have revealed critical roles of several proteins in the assembly of slit diaphragms. The nephrin–podocin complex is the main constituent of slit diaphragms. However, the molecular mechanisms regulating these proteins to maintain the slit diaphragms are still largely unknown. Here, we demonstrate that the PAR3–atypical protein kinase C (aPKC)–PAR6β cell polarity proteins co-localize to the slit diaphragms with nephrin. Furthermore, selective depletion of aPKCλ in mouse podocytes results in the disassembly of slit diaphragms, a disturbance in apico-basal cell polarity, and focal segmental glomerulosclerosis (FSGS). The aPKC–PAR3 complex associates with the nephrin–podocin complex in podocytes through direct interaction between PAR3 and nephrin, and the kinase activity of aPKC is required for the appropriate distribution of nephrin and podocin in podocytes. These observations not only establish a critical function of the polarity proteins in the maintenance of slit diaphragms, but also imply their potential involvement in renal failure in FSGS.
doi:10.1371/journal.pone.0004194
PMCID: PMC2614475  PMID: 19142224

Results 1-2 (2)