PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Age-related cataract in dogs: a biomarker for life span and its relation to body size 
Age  2010;33(3):451-460.
Clinical data from 72 dog breeds of varying size and life expectancy were grouped according to breed body mass and tested for prevalence at ages 4 to 5, ages 7 to 10, and lifetime incidence of non-hereditary, age-related cataract (ARC). The incidence of ARC was found to be directly related to the relative life expectancies in the breed groups: The smallest dog breeds had a lower ARC prevalence between ages 4 and 5 than mid-size breeds and these, in turn, a lower prevalence than the giant breeds. A similar sequence was evident for ages 7 to 10 and for overall lifetime incidence of ARC. These differences became more significant when comparing small and giant breeds only. We could also confirm the inverse relationship between body size and life expectancy in these same sets of dog breeds. Our results show that body size, life expectancy, and ARC incidence are interrelated in dogs. Given that ARC has been shown to be at least partially caused by oxidative damage to lens epithelial cells and the internal lens, we suggest that it can be considered not only as a general biomarker for life expectancy in the canine and possibly other species, but also for the systemic damages produced by reactive oxygen species. This suggests new approaches to examine the gene expression pathways affecting the above-noted linkages.
doi:10.1007/s11357-010-9158-4
PMCID: PMC3168595  PMID: 20607428
Dog; Age-related cataract; Breeds; Size; Life span
4.  Age-related retention of fiber cell nuclei and nuclear fragments in the lens cortices of multiple species 
Molecular Vision  2011;17:2672-2684.
Purpose
To determine the differences between species in the retention of lens fiber cell nuclei and nuclear fragments in the aging lens cortex and the relationship of nuclear retention to lens opacity. For this purpose old human, monkey, dog, and rat lenses were compared to those of three strains of mouse. We also investigated possible mechanisms leading to nuclear retention.
Methods
Fixed specimens of the species referred to above were obtained from immediate on site sacrifice of mice and rats, or from recently fixed lenses of other species, dogs, monkeys, and humans, obtained from collaborators. The retention of undegraded nuclei and nuclear fragments was graded 1–4 from histologic observation. All species lenses were examined microscopically in fixed sections stained with hematoxylin and eosin (H&E) or 4',6-diamidino-2-phenylindole (DAPI). Slit lamp observations were made only on the mice and rats before sacrifice and lens fixation. Values of 0 to 4 (clear lens to cataract) were given to degree of opacity. MRNA content in young versus old C57BL/6 mouse lenses was determined by quantitative PCR (qPCR) for DNase II-like acid DNase (DLAD) and other proteins. DLAD protein was determined by immunofluorescence of fixed eye sections.
Results
In old C57BL/6 and DBA mice and, to a lesser degree, in old CBA mice and old Brown Norway (BN) rats lenses were seen to contain a greatly expanded pool of unresolved whole nuclei or fragments of nuclei in differentiating lens fiber cells. This generally correlated with increased slit lamp opacities in these mice. Most old dog lenses also had an increase in retained cortical nuclei, as did a few old humans. However, a second rat strain, BNF1, in which opacity was quite high had no increase in retained nuclei with age nor did any of the old monkeys, indicating that retained nuclei could not be a cause of opacity in these animals. The nuclei and nuclear fragments were located at all levels in the outer cortex extending inward from the lens equator and were observable by the DAPI. These nuclei and nuclear fragments were seen from 12 months onward in all C57BL/6 and DBA/2 mice and to a lesser degree in the CBA, increasing in number and in space occupancy with increasing age. Preliminary results suggest that retention of nuclei in the C57BL/6 mouse is correlated with an age-related loss of DLAD from old lenses.
Conclusions
A very marked apparently light refractive condition caused by retained cortical nuclei and nuclear fragments is present in the lens cortices, increasing with age in the three strains of mice examined and in one of two strains of rats (BN). This condition was also seen in some old dogs and a few old humans. It may be caused by an age-related loss of DLAD, which is essential for nuclear DNA degradation in the lens. However, this condition does not develop in old BNF1 rats, or old monkeys and is only seen sporadically in humans. Thus, it can not be a universal cause for age related lens opacity or cataract presence, although it develops concurrently with opacity in mice. This phenomenon should be considered when using the old mouse as a model for human age-related cataract.
PMCID: PMC3209424  PMID: 22065920
5.  Inbreeding and fertility in Irish Wolfhounds in Sweden: 1976 to 2007 
Background
Given that no influence of inbreeding on life expectancy could be demonstrated in Irish Wolfhounds in a previous study, it was decided to test the influence of inbreeding and other parameters on fertility in this breed.
Methods
The study was based on all Irish Wolfhound litters registered in Sweden between 1976 and 2007 (n = 822 litters) as provided by the Swedish Kennel Club (SKK) and combined with a pedigree database going back to 1862. Analyses were performed using linear regression in a Generalised Linear Model and other tests in the SAS system®.
Results
Mean number of pups per litter was 6.01 ± 2.65, with a maximum of 13. There were no significant differences in either the number of litters or the number of pups between years of birth. Males were used for breeding at a significantly earlier age than females. Mean number of litters per parent was 2.96 ± 3.14 for males and 1.59 ± 0.87 for females. No influence of Wright's inbreeding coefficients over 5, 10, 20 and 30 generations and/or Meuwissen's inbreeding coefficients on litter size was detected. In the Generalised Linear Model, highly significant, but weak (coefficient of determination (R2) = 0.0341) influences were found for maternal age at mating as well as maternal inbreeding measured by Wright's inbreeding coefficient over 30 generations and Meuwissen's inbreeding coefficient. Paternal inbreeding coefficients over 5, 10, 20 and 30 generations and calculated after Meuwissen, as well as maternal inbreeding coefficients over 5, 10 and 20 generations did not have significant effects on litter size.
Conclusion
The low coefficient of determination (R2) value of the Generalised Linear Model indicates that inbreeding does not have a strong influence on fertility in Irish Wolfhounds, which is consistent with earlier results and the breed's genetic history. These results likely reflect the aforementioned genetic history and should not be extrapolated to other breeds without prior breed-specific research.
doi:10.1186/1751-0147-51-21
PMCID: PMC2694810  PMID: 19419574

Results 1-5 (5)