PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Functional changes of the coronary microvasculature with aging regarding glucose tolerance, energy metabolism, and oxidative stress 
Age  2014;36(4):9670.
This study was aimed at characterizing the functional progression of the endothelial (ECs) and smooth muscle cells (SMCs) of the coronary microvasculature between youth and old age, as well as at determining the mechanisms of the observed changes on the basis of the glucose tolerance, mitochondrial energy metabolism, and oxidative stress. Male rats were divided into four age groups (3, 6, 11, and 17 months for the young (Y), young adult (YA), middle-aged (MA), and old (O) animals). The cardiac mechanical function, endothelial-dependent dilatation (EDD) and endothelial-independent dilatation (EID) of the coronary microvasculature were determined in a Langendorff preparation. The mitochondrial respiration and H2O2 production were evaluated and completed by ex vivo measurements of oxidative stress. EDD progressively decreased from youth to old age. The relaxation properties of the SMCs, although high in the Y rats, decreased drastically between youth and young adulthood and stabilized thereafter, paralleling the reduction of mitochondrial oxidative phosphorylation. The ECs dilatation activity, low at youth, was stimulated in YA animals and returned to their initial level at middle age. That parameter followed faithfully the progression of the amount of active cardiac endothelial nitric oxide synthase and whole body glucose intolerance. In conclusion, the progressive decrease in EDD occurring with aging is due to different functional behaviors of the ECs and SMCs, which appear to be associated with the systemic glucose intolerance and cardiac energy metabolism.
doi:10.1007/s11357-014-9670-z
PMCID: PMC4150905  PMID: 24994535
Endothelial-dependent dilatation; Langendorff preparation; Phosphorylation; Smooth muscle cells
2.  Middle age aggravates myocardial ischemia through surprising upholding of complex II activity, oxidative stress, and reduced coronary perfusion 
Age  2010;33(3):321-336.
Aging compromises restoration of the cardiac mechanical function during reperfusion. We hypothesized that this was due to an ampler release of mitochondrial reactive oxygen species (ROS). This study aimed at characterising ex vivo the mitochondrial ROS release during reperfusion in isolated perfused hearts of middle-aged rats. Causes and consequences on myocardial function of the observed changes were then evaluated. The hearts of rats aged 10- or 52-week old were subjected to global ischemia followed by reperfusion. Mechanical function was monitored throughout the entire procedure. Activities of the respiratory chain complexes and the ratio of aconitase to fumarase activities were determined before ischemia and at the end of reperfusion. H2O2 release was also evaluated in isolated mitochondria. During ischemia, middle-aged hearts displayed a delayed contracture, suggesting a maintained ATP production but also an increased metabolic proton production. Restoration of the mechanical function during reperfusion was however reduced in the middle-aged hearts, due to lower recovery of the coronary flow associated with higher mitochondrial oxidative stress indicated by the aconitase to fumarase ratio in the cardiac tissues. Surprisingly, activity of the respiratory chain complex II was better maintained in the hearts of middle-aged animals, probably because of an enhanced preservation of its membrane lipid environment. This can explain the higher mitochondrial oxidative stress observed in these conditions, since cardiac mitochondria produce much more H2O2 when they oxidize FADH2-linked substrates than when they use NADH-linked substrates. In conclusion, the lower restoration of the cardiac mechanical activity during reperfusion in the middle-aged hearts was due to an impaired recovery of the coronary flow and an insufficient oxygen supply. The deterioration of the coronary perfusion was explained by an increased mitochondrial ROS release related to the preservation of complex II activity during reperfusion.
doi:10.1007/s11357-010-9186-0
PMCID: PMC3168590  PMID: 20878490
Myocardial aging; Ischemia; Oxidative stress; Respiratory chain complexes

Results 1-2 (2)