PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats 
Consumption of a high-fat diet (HFD) in experimental animal models initiates a series of molecular events and outcomes, including insulin resistance and obesity, that mimic the metabolic syndrome in humans. The relationship among, and order of, the molecular events linking a diet high in fat to pathologies is often unclear. In the present study, we provide several novel insights into the relationship between a HFD and AMP-activated protein kinase (AMPK), a key regulator of cellular metabolism and whole-body energy balance. HFD substantially decreased the activities of both iso-forms of AMPK in white adipose tissue, heart, and liver. These decreases in AMPK activity occurred in the absence of decreased AMPK transcription, systemic inflammation, hyperglycemia, or elevated levels of free fatty acids. The HFD-induced decrease in AMPK activity was associated with systemic insulin resistance and hyperleptinemia. In blood, >98 % of AMPK activity was localized in agranulocytes as the α1 isoform. In contrast to the solid tissues studied, AMPK activities were not altered by HFD in granulocytes or agranulocytes. We conclude that HFD-induced obesity causes a broad, non-tissue, or isoform-specific lowering of AMPK activity. Given the central position AMPK plays in whole-body energy balance, this decreased AMPK activity may play a previously unrecognized role in obesity and its associated pathologies.
doi:10.1007/s13105-012-0199-2
PMCID: PMC3644018  PMID: 22941749
Obesity; Diabetes; Adipose; Blood
2.  Caloric restriction does not alter effects of aging in cardiac side population cells 
Age  2010;33(3):351-361.
The aged heart displays a loss of cardiomyocyte number and function, possibly due to the senescence and decreased regenerative potential that has been observed in some cardiac progenitor cells. An important cardiac progenitor that has not been studied in the context of aging is the cardiac side population (CSP) cell. To address this, flow cytometry-assisted cell sorting was used to isolate CSP cells from adult (6–10 months old) and aged (24–32 months old) C57Bl/6 mice that were fed either a control diet or an anti-aging diet (caloric restriction, CR). Aging caused a 2.3-fold increase in the total number of CSP cells and a 3.2-fold increase in the cardiomyogenic sca1+/CD31− subpopulation. Aging did not affect markers of proliferation or senescence, including telomerase activity and expression of cell cycle genes, in sca1+/CD31− CSP cells. In contrast, the aged cells had reduced expression of genes associated with differentiation, including smooth muscle actin and cardiac muscle actin (5.1- and 3.2-fold, respectively). None of these age effects were altered by CR diet. Therefore, it appears that the manner in which CSP cells age is distinct from the aging of post-mitotic tissue (and perhaps other progenitor cells) that can often be attenuated by CR.
doi:10.1007/s11357-010-9188-y
PMCID: PMC3168602  PMID: 20922487
Adult stem cell; Cardiac regeneration; CR; CSP; Sca1; CD31
3.  Caloric restriction attenuates the age-associated increase of adipose-derived stem cells but further reduces their proliferative capacity 
Age  2010;33(2):107-118.
White adipose tissue is a promising source of mesenchymal stem cells. Currently, little is known about the effect of age and caloric restriction (CR) on adipose-derived stem cells (ASC). This is important for three reasons: firstly, age and CR cause extensive remodeling of WAT; it is currently unknown how this remodeling affects the resident stem cell population. Secondly, stem cell senescence has been theorized as one of the causes of aging and could reduce the utility of a stem cell as a reagent. Thirdly, the mechanism by which CR extends lifespan is currently not known, one theory postulates that CR maintains the resident stem cell population in youthful “fit” state. For the purpose of this study, we define ASC as lineage negative (lin−)/CD34+(low)/CD31−. We show that aging increases the abundance of ASC and the expression of Cdkn2a 9.8-fold and Isl1 60.6-fold. This would suggest that aging causes an accumulation of non-replicative ASC. CR reduced the percentage of ASC in the lin− SVF while also reducing colony forming ability. Therefore, CR appears to have anti-proliferative effects on ASC that may be advantageous from the perspective of cancer, but our data raises the possibility that it may be disadvantageous for regenerative medicine applications.
doi:10.1007/s11357-010-9166-4
PMCID: PMC3127466  PMID: 20628827
Stem cells; Aging; Caloric restriction; Adipose tissue; Regeneration; Cancer
4.  Downregulation of plasma insulin levels and hepatic PPAR expression during the first week of caloric restriction in mice 
Experimental gerontology  2007;43(3):146-153.
Calorie restriction extends lifespan by decreasing the rate of tumor formation, an effect occurring within 8 weeks of initiating a restricted diet. Our goal was to define how the first weeks of a calorie restricted diet (60% of ad libitum calories) affects putative mediators of the calorie restriction phenotype, focusing on regulators of fatty acid biosynthesis. In C57Bl/6 mice, insulin decreased over 50% (p<0.05) during the first week of calorie restriction whereas IGF-1 was unaffected. In the liver, PPAR mRNA fell to 13% of baseline after one week of calorie restriction (p<0.05), whereas hepatic SREBP-1c and SIRT1 mRNA levels were unaffected. No changes in abdominal or subcutaneous adipose tissue were observed until after 8 weeks of caloric restriction. We conclude that calorie restriction-induced decreases in insulin and hepatic PPAR are rapid enough to support a role for these molecules in triggering the initial phase of the calorie restriction phenotype.
doi:10.1016/j.exger.2007.10.011
PMCID: PMC2350197  PMID: 18053669
Aging; Caloric Restriction

Results 1-4 (4)