PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (211)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Dietary Energy Intake Modifies Brainstem Autonomic Dysfunction Caused by Mutant α-Synuclein 
Neurobiology of aging  2012;34(3):928-935.
Parkinson’s disease (PD) patients often exhibit impaired regulation of heart rate by the autonomic nervous system (ANS) that may precede motor symptoms in many cases. Results of autopsy studies suggest that brainstem pathology, including the accumulation of α-synuclein, precedes damage to dopaminergic neurons in the substantia nigra in PD. However, the molecular and cellular mechanisms responsible for the early dysfunction of brainstem autonomic neurons are unknown. Here we report that mice expressing a mutant form of α-synuclein that causes familial PD exhibit aberrant autonomic control of the heart characterized by elevated resting heart rate and an impaired cardiovascular stress response, associated with reduced parasympathetic activity and accumulation of α-synuclein in the brainstem. These ANS abnormalities occur early in the disease process. Adverse effects of α-synuclein on the control of heart rate are exacerbated by a high energy diet and ameliorated by intermittent energy restriction. Our findings establish a mouse model of early dysregulation of brainstem control of the cardiovascular system in PD, and further suggest the potential for energy restriction to attenuate ANS dysfunction, particularly in overweight individuals.
doi:10.1016/j.neurobiolaging.2012.07.008
PMCID: PMC3498580  PMID: 22883907
α-synuclein; acetylcholine; ANS; BDNF; brainstem; parasympathetic; Parkinson’s disease
2.  Effects of Cerium Oxide Nanoparticles on the Growth of Keratinocytes, Fibroblasts and Vascular Endothelial Cells in Cutaneous Wound Healing 
Biomaterials  2012;34(9):2194-2201.
Rapid and effective wound healing requires a coordinated cellular response involving fibroblasts, keratinocytes and vascular endothelial cells (VECs). Impaired wound healing can result in multiple adverse health outcomes and, although antibiotics can forestall infection, treatments that accelerate wound healing are lacking. We now report that topical application of water soluble cerium oxide nanoparticles (Nanoceria) accelerates the healing of full-thickness dermal wounds in mice by a mechanism that involves enhancement of the proliferation and migration of fibroblasts, keratinocytes and VECs. The Nanoceria penetrated into the wound tissue and reduced oxidative damage to cellular membranes and proteins, suggesting a therapeutic potential for topical treatment of wounds with antioxidant nanoparticles.
doi:10.1016/j.biomaterials.2012.11.061
PMCID: PMC3552035  PMID: 23266256
Cerium oxide nanoparticles; angiogenesis; vascular endothelial cells; keratinocytes; fibroblasts; wound healing; oxidative stress
3.  CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response 
The Journal of Experimental Medicine  2013;210(8):1603-1619.
The transcription factor DEC1 is induced by CD28 ligation and is required for optimal CD4+ T cell responses and the development of EAE.
During the initial hours after activation, CD4+ T cells experience profound changes in gene expression. Co-stimulation via the CD28 receptor is required for efficient activation of naive T cells. However, the transcriptional consequences of CD28 co-stimulation are not completely understood. We performed expression microarray analysis to elucidate the effects of CD28 signals on the transcriptome of activated T cells. We show that the transcription factor DEC1 is highly induced in a CD28-dependent manner upon T cell activation, is involved in essential CD4+ effector T cell functions, and participates in the transcriptional regulation of several T cell activation pathways, including a large group of CD28-regulated genes. Antigen-specific, DEC1-deficient CD4+ T cells have cell-intrinsic defects in survival and proliferation. Furthermore, we found that DEC1 is required for the development of experimental autoimmune encephalomyelitis because of its critical role in the production of the proinflammatory cytokines GM-CSF, IFN-γ, and IL-2. Thus, we identify DEC1 as a critical transcriptional mediator in the activation of naive CD4+ T cells that is required for the development of a T cell–mediated autoimmune disease.
doi:10.1084/jem.20122387
PMCID: PMC3727315  PMID: 23878307
4.  Tweaking Energy Metabolism to Prevent and Treat Neurological Disorders 
Accumulating data from epidemiological and clinical studies, and from animal models, point to pivotal roles for disordered behavioral and neuroendocrine control of energy metabolism in the pathogenesis of several major neurodegenerative disorders. Particularly troubling is the mounting evidence that excessive dietary energy intake and a sedentary lifestyle render the brain vulnerable not only to stroke, but also to Alzheimer’s and Parkinson’s diseases. Recent advances in understanding the molecular and cellular mechanisms by which energy intake and expenditure affect neuronal vulnerability are leading to novel therapeutic interventions that increase the durability and resiliency of the brain during aging.
doi:10.1038/clpt.2010.135
PMCID: PMC3743231  PMID: 20856237
5.  Aging and Neuronal Vulnerability 
Nature reviews. Neuroscience  2006;7(4):278-294.
Everyone ages, but only some will acquire a neurodegenerative disorder in the process. Disease might occur when cells fail to respond adaptively to age-related increases in oxidative, metabolic and ionic stress resulting in excessive accumulation of damaged proteins, DNA and membranes. Determinants of neuronal vulnerability might include cell size and location, metabolism of disease-specific proteins, and repertoire of signal transduction pathways and stress resistance mechanisms. Emerging evidence on protein interaction networks that monitor and respond to the normal aging process suggests that successful neural aging is possible for most, but also cautions that cures for neurodegenerative disorders are unlikely in the near future.
doi:10.1038/nrn1886
PMCID: PMC3710114  PMID: 16552414
6.  Posteromedial cortexglutamate and GABApredict intrinsic functional connectivity of the default mode network 
NeuroImage  2012;64:112-119.
The balance between excitatory glutamatergic projection neurons and inhibitory GABAergic interneurons determines the function of cortical microcircuits. How these neurotransmitters relate to the functional status of an entire macro-scale network remains unknown. The posteromedial cortex (PMC) is the default mode network (DMN) node with the greatest functional connectivity; therefore, we hypothesized that PMC glutamate and GABA predict intrinsic functional connectivity (iFC) across the DMN. In 20 healthy men, we combined J-resolved magnetic resonance spectroscopy to measure glutamate and GABA in the PMC and resting fMRI followed by group Independent Components Analysis to extract the DMN. We showed that, controlling for age and GM volume in the MRS voxel, PMC glutamate and GABA explained about half of the variance in DMN iFC (represented by the network’s beta coefficient for rest). Glutamate correlated positively and GABA correlated negatively with DMN iFC; in an alternative statistical model which included the glutamate/GABA ratio, the ratio correlated positively with DMN iFC. Age had no independent effect on DMN iFC. No other network was associated with PMC glutamate or GABA. We conclude that regional neurotransmitter concentrations in a network node strongly predict network but not global brain iFC.
doi:10.1016/j.neuroimage.2012.09.029
PMCID: PMC3801193  PMID: 23000786
Default Mode Network; Excitation; Inhibition; Microcircuit; Brain network; Connectivity; precuneus
7.  Energy Intake and Exercise as Determinants of Brain Health and Vulnerability to Injury and Disease 
Cell metabolism  2012;16(6):706-722.
Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress response signaling pathways in neurons involving neurotrophic factors, protein chaperones, DNA repair proteins, autophagy and mitochondrial biogenesis. By suppressing adaptive cellular stress responses, overeating and a sedentary lifestyle may increase the risk of Alzheimer’s and Parkinson’s diseases, stroke, and depression. Intense concerted efforts of governments, families, schools and physicians will be required to successfully implement brain-healthy lifestyles that incorporate ER and exercise.
doi:10.1016/j.cmet.2012.08.012
PMCID: PMC3518570  PMID: 23168220
8.  Subcellular Distribution of Patched and Smoothened in the Cerebellar Neurons 
Cerebellum (London, England)  2012;11(4):972-981.
The Sonic hedgehog (Shh) signaling pathway carries out a wide range of biological functions such as patterning of the embryonic neural tube and expansion of cerebellar granule cell precursors. We previously have found that the Shh signaling receptors, Patched1 (Ptch1) and Smoothened (Smo), are expressed in hippocampal neurons of developing and adult rats, suggesting the continued presence of Shh signaling in postmitotic, differentiated neurons. Here, we report that Ptch1 and Smo are present in the processes and growth cones of immature neurons in the developing cerebellum, and that, in the mature cerebellum, Ptch1 and Smo are expressed by several types of neurons including Purkinje cells, granule cells, and interneurons. Within these neurons, Ptch1 and Smo are predominantly localized in the postsynaptic side of the synapses, a distribution pattern similar to that found in hippocampal neurons. Our findings provide morphological evidence that Shh signaling events are not confined to neuronal precursors and are likely to have ongoing roles within the postmitotic neurons of the developing and adult cerebellum.
doi:10.1007/s12311-012-0374-6
PMCID: PMC3495249  PMID: 22477363
Sonic hedgehog; Patched; Smoothened; Cerebellar neuron; Synapse
9.  Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin 
Journal of neurochemistry  2012;123(4):477-490.
Emerging evidence indicates that microRNAs (miRNAs) may play an important role in the pathogenesis of Huntington’s disease (HD). To identify the individual miRNAs that are altered in HD and may therefore regulate a gene network underlying mutant huntingtin-induced neuronal dysfunction in HD, we performed miRNA array analysis combined with mRNA profiling in the cerebral cortex from N171-82Q HD mice. Expression profiles of miRNAs as well as mRNAs in HD mouse cerebral cortex were analyzed and confirmed at different stages of disease progression; the most significant changes of miRNAs in the cerebral cortex were also detected in the striatum of HD mice. Our results revealed a significant alteration of miR-200 family members, miR-200a and miR-200c in the cerebral cortex and the striatum, at the early stage of disease progression in N171-82Q HD mice. We used a coordinated approach to integrate miRNA and mRNA profiling, and applied bioinformatics to predict a target gene network potentially regulated by these significantly altered miRNAs that might be involved in HD disease progression. Interestingly, miR-200a and miR-200c are predicted to target genes regulating synaptic function, neurodevelopment and neuronal survival. Our results suggest that altered expression of miR-200a and miR-200c may interrupt the production of proteins involved in neuronal plasticity and survival, and further investigation of the involvement of perturbed miRNA expression in HD pathogenesis is warranted, and may lead to reveal novel approaches for HD therapy.
doi:10.1111/j.1471-4159.2012.07925.x
PMCID: PMC3472040  PMID: 22906125
miRNA array; Huntington’s disease; gene array; miR-200; Trim2
10.  Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development 
Stem cells (Dayton, Ohio)  2012;30(11):2535-2547.
Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex.
doi:10.1002/stem.1213
PMCID: PMC3479374  PMID: 22949407
cpYFP; manganese SOD; extracellular signal-regulated kinases; mitochondrial permeability transition pore; neural progenitor cells; self renewal, proliferation, neurospheres
11.  Parkinson’s disease: don’t mess with calcium 
The Journal of Clinical Investigation  2012;122(4):1195-1198.
The hallmark of the movement disorder Parkinson’s disease (PD) is progressive degeneration of dopaminergic neurons. Mitochondrial dysfunction, impaired ubiquitin-mediated proteolysis of α-synuclein, and ER stress are each implicated in the complex and poorly understood sequence of events leading to dopaminergic neuron demise. In this issue of the JCI, Selvaraj et al. report that in a mouse neurotoxin-based model of PD, reduced Ca2+ influx through transient receptor potential C1 (TRPC1) channels in the plasma membrane of dopaminergic neurons triggers a cell death–inducing ER stress response. These new findings suggest that TRPC1 channels normally function in Ca2+-mediated signaling pathways that couple adaptive/neurotrophic responses to metabolic and oxidative stress and suggest that disruption of these pathways may contribute to PD.
doi:10.1172/JCI62835
PMCID: PMC3314478  PMID: 22446181
12.  Permeability Transition Pore-Mediated Mitochondrial Superoxide Flashes Regulate Cortical Neural Progenitor Differentiation 
PLoS ONE  2013;8(10):e76721.
In the process of neurogenesis, neural progenitor cells (NPCs) cease dividing and differentiate into postmitotic neurons that grow dendrites and an axon, become excitable, and establish synapses with other neurons. Mitochondrial biogenesis and aerobic metabolism provide energy substrates required to support the differentiation, growth and synaptic activity of neurons. Mitochondria may also serve signaling functions and, in this regard, it was recently reported that mitochondria can generate rapid bursts of superoxide (superoxide flashes), the frequency of which changes in response to environmental conditions and signals including oxygen levels and Ca2+ fluxes. Here we show that the frequency of mitochondrial superoxide flashes increases as embryonic cerebral cortical neurons differentiate from NPCs, and provide evidence that the superoxide flashes serve a signaling function that is critical for the differentiation process. The superoxide flashes are mediated by mitochondrial permeability transition pore (mPTP) opening, and pharmacological inhibition of the mPTP suppresses neuronal differentiation. Moreover, superoxide flashes and neuronal differentiation are inhibited by scavenging of mitochondrial superoxide. Conversely, manipulations that increase superoxide flash frequency accelerate neuronal differentiation. Our findings reveal a regulatory role for mitochondrial superoxide flashes, mediated by mPTP opening, in neuronal differentiation.
doi:10.1371/journal.pone.0076721
PMCID: PMC3792897  PMID: 24116142
13.  Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer's disease 
Journal of neurochemistry  2012;124(1):59-68.
Several epidemiological and preclinical studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β-amyloid (Aβ) production and inhibit neuroinflammation. However, follow-up clinical trials, mostly using selective cyclooxygenase (COX)-2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX-1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro-inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX-1 inhibition, rather than COX-2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20-month-old triple transgenic AD (3 × Tg-AD) mice with the COX-1 selective inhibitor SC-560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC-560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg-AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX-1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg-AD mice. Thus, selective COX-1 inhibition should be further investigated as a potential therapeutic approach for AD.
doi:10.1111/jnc.12059
PMCID: PMC3780364  PMID: 23083210
3 × Tg-AD mice; Alzheimer's disease; COX-1; microglia; SC-560
14.  Neural Progenitor Cells Grown on Hydrogel Surfaces Respond to the product of the Transgene of Encapsulated Genetically Engineered Fibroblasts 
Biomacromolecules  2010;11(11):2936-2943.
Engineered tissue strategies for central nervous system (CNS) repair have the potential for localizing treatment using a wide variety of cells or growth factors. However, these strategies are often limited by their ability to address only one aspect of the injury. Here we report the development of a novel alginate construct that acts as a multi-functional tissue scaffold for CNS repair, and as a localized growth factor delivery vehicle. We show that the surface of this alginate construct acts as an optimal growth environment for neural progenitor cell (NPC) attachment, survival, migration, and differentiation. Importantly, we show that tailor-made alginate constructs containing brain-derived neurotrophic factor or neurotrophin-3 differentially direct lineage fates of NPCs and may therefore be useful in treating a wide variety of injuries. It is this potential for directed differentiation of a scaffold prior to implantation at the injury site that we explore here.
doi:10.1021/bm100699q
PMCID: PMC3775902  PMID: 20942395
Alginate; neural progenitor cell; neurotrophic factor; genetically engineered fibroblasts; differentiation; central nervous system
15.  BDNF as a regulator of systemic and brain energy metabolism and cardiovascular health 
Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer’s and Parkinson’s diseases) neurological disorders. The findings described below, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this article provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.
doi:10.1111/j.1749-6632.2012.06525.x
PMCID: PMC3411899  PMID: 22548651
autonomic nervous system; brain-derived neurotrophic factor; cognition; diabetes; exercise; neurogenesis; synaptic plasticity
16.  Mitochondrial Function in Human Neuroblastoma Cells Is Up-Regulated and Protected by NQO1, a Plasma Membrane Redox Enzyme 
PLoS ONE  2013;8(7):e69030.
Background
Recent findings suggest that NADH-dependent enzymes of the plasma membrane redox system (PMRS) play roles in the maintenance of cell bioenergetics and oxidative state. Neurons and tumor cells exhibit differential vulnerability to oxidative and metabolic stress, with important implications for the development of therapeutic interventions that promote either cell survival (neurons) or death (cancer cells).
Methods and Findings
Here we used human neuroblastoma cells with low or high levels of the PMRS enzyme NADH-quinone oxidoreductase 1 (NQO1) to investigate how the PMRS modulates mitochondrial functions and cell survival. Cells with elevated NQO1 levels exhibited higher levels of oxygen consumption and ATP production, and lower production of reactive oxygen species. Cells overexpressing NQO1 were more resistant to being damaged by the mitochondrial toxins rotenone and antimycin A, and exhibited less oxidative/nitrative damage and less apoptotic cell death. Cells with basal levels of NQO1 resulted in increased oxidative damage to proteins and cellular vulnerability to mitochondrial toxins. Thus, mitochondrial functions are enhanced and oxidative stress is reduced as a result of elevated PMRS activity, enabling cells to maintain redox homeostasis under conditions of metabolic and energetic stress.
Conclusion
These findings suggest that NQO1 is a potential target for the development of therapeutic agents for either preventing neuronal degeneration or promoting the death of neural tumor cells.
doi:10.1371/journal.pone.0069030
PMCID: PMC3708898  PMID: 23874855
17.  Toll-like receptor Signaling in Neural Plasticity and Disease 
Trends in neurosciences  2011;34(5):269-281.
Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands. TLR signaling in immune cells, glia and neurons may play roles in the pathogenesis of stroke, Alzheimer's disease and multiple sclerosis. Recent findings suggest that TLR signaling also influences multiple dynamic processes in the developing and adult central nervous system including neurogenesis, axonal growth and structural plasticity. In addition, TLRs are implicated in the regulation of behaviors including learning and memory, and anxiety. This review describes recently discovered and unexpected roles for TLRs in neuroplasticity, and the implications of these findings for future basic and translational research studies.
doi:10.1016/j.tins.2011.02.005
PMCID: PMC3095763  PMID: 21419501
18.  Aberrant heart rate and brainstem BDNF signaling in a mouse model of Huntington’s disease 
Neurobiology of Aging  2011;33(7):1481.e1-1481.e5.
Huntington’s disease (HD) is associated with profound autonomic dysfunction including dysregulation of cardiovascular control often preceding cognitive or motor symptoms. Brain-derived neurotrophic factor (BDNF) levels are decreased in HD brain, and restoring BDNF levels prevents neuronal loss and extends lifespan. We reasoned that heart rate changes in HD may be associated with altered BDNF signalling in cardiovascular control nuclei in the brainstem. Here we show that heart rate is elevated in HD (N171-82Q) mice at presymptomatic and early disease stages, and heart rate responses to restraint stress are attenuated. BDNF and TrkB mRNA and protein levels were significantly decreased in brainstem cardiovascular nuclei in HD mice. Central administration of BDNF restored the heart rate to control levels. Our findings establish a link between diminished BDNF expression in brainstem cardiovascular nuclei and abnormal heart rates in HD mice, and suggest a novel therapeutic target for correcting cardiovascular dysfunction in HD.
doi:10.1016/j.neurobiolaging.2011.11.030
PMCID: PMC3329581  PMID: 22209255
Huntington’s disease; brainstem; BDNF
19.  The stromal factors SDF1α, sFRP1 and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells 
Journal of Neuroscience Research  2012;90(7):1367-1381.
Human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons hold potential for treating Parkinson’s disease (PD) through cell replacement therapy. Generation of DA neurons from hESCs has been achieved by co-culture with the stromal cell line PA6, a source of stromal cell-derived inducing activity (SDIA). However, the factor(s) produced by stromal cells that constitute SDIA are largely undefined. We previously reported that medium conditioned by PA6 cells can generate functional DA neurons from NTera2 human embryonal carcinoma stem cells. Here we show that PA6-conditioned medium can induce DA neuronal differentiation in both NTera2 cells and the hESC I6 cell line. To identify the factor(s) responsible for SDIA, we used large-scale microarray analysis of gene expression combined with mass spectrometric analysis of PA6-conditioned medium (CM). The candidate factors, hepatocyte growth factor (HGF), stromal cell-derived factor-1 α (SDF1α), secreted frizzled-related protein 1 (sFRP1), and vascular endothelial growth factor D (VEGFD) were identified and their concentrations in PA6 CM were established by immunoaffinity capillary electrophoresis. Upon addition of SDF1α, sFRP1 and VEGFD to the culture medium we observed an increase in the number of cells expressing tyrosine hydroxylase (a marker for DA neurons) and beta-III tubulin (a marker for immature neurons) in both the NTera2 and I6 cell lines. These results indicate that SDF1α, sFRP1 and VEGFD are major components of SDIA, and suggest the potential use of these defined factors to elicit DA differentiation of pluripotent human stem cells for therapeutic intervention in PD.
doi:10.1002/jnr.23064
PMCID: PMC3350575  PMID: 22535492
dopaminergic neurons; neuronal differentiation; stromal cell derived inducing activity; embryonic stem cells
20.  Evolutionary Aspects of Human Exercise – Born to Run Purposefully 
Ageing Research Reviews  2012;11(3):347-352.
This article is intended to raise awareness of the adaptive value of endurance exercise (particularly running) in the evolutionary history of humans, and the implications of the genetic disposition to exercise for the aging populations of modern technology-driven societies. The genome of Homo sapiens has evolved to support the svelte phenotype of an endurance runner, setting him/her apart from all other primates. The cellular and molecular mechanisms underlying the competitive advantages conferred by exercise capacity in youth can also provide a survival benefit beyond the reproductive period. These mechanisms include up-regulation of genes encoding proteins involved in protecting cells against oxidative stress, disposing of damaged proteins and organelles, and enhancing bioenergetics. Particularly fascinating are the signaling mechanisms by which endurance running changes the structure and functional capabilities of the brain and, conversely, the mechanisms by which the brain integrates metabolic, cardiovascular and behavioral responses to exercise. As an emerging example, I highlight the roles of brain-derived neurotrophic factor (BDNF) as a mediator of the effects of exercise on the brain, and BDNF s critical role in regulating metabolic and cardiovascular responses to endurance running. A better understanding of such healthspan-extending actions of endurance exercise may lead to new approaches for improving quality of life as we advance in the coming decades and centuries.
doi:10.1016/j.arr.2012.01.007
PMCID: PMC3356485  PMID: 22394472
21.  Impaired Adaptive Cellular Responses to Oxidative Stress and the Pathogenesis of Alzheimer's Disease 
Antioxidants & Redox Signaling  2011;14(8):1519-1534.
Abstract
As is generally true with other age-related diseases, Alzheimer's disease (AD) involves oxidative damage to cellular components in the affected tissue, in this case the brain. The causes and consequences of oxidative stress in neurons in AD are not fully understood, but considerable evidence points to important roles for accumulation of amyloid β-peptide upstream of oxidative stress and perturbed cellular Ca2+ homeostasis and energy metabolism downstream of oxidative stress. The identification of mutations in the β-amyloid precursor protein and presenilin-1 as causes of some cases of early onset inherited AD, and the development of cell culture and animal models based on these mutations has greatly enhanced our understanding of the AD process, and has greatly expanded opportunities for preclinical testing of potential therapeutic interventions. In this regard, and of particular interest to us, is the elucidation of adaptive cellular stress response pathways (ACSRP) that can counteract multiple steps in the AD neurodegenerative cascades, thereby limiting oxidative damage and preserving cognitive function. ACSRP can be activated by factors ranging from exercise and dietary energy restriction, to drugs and phytochemicals. In this article we provide an overview of oxidative stress and AD, with a focus on ACSRP and their potential for preventing and treating AD. Antioxid. Redox Signal. 14, 1519–1534.
doi:10.1089/ars.2010.3569
PMCID: PMC3061199  PMID: 20849373
22.  Pregabalin Suppresses Calcium-Mediated Proteolysis and Improves Stroke Outcome 
Neurobiology of disease  2010;41(3):624-629.
Pregabalin, a Ca2+ channel α2δ-subunit antagonist with analgesic and antiepileptic activity, reduced neuronal loss and improved functional outcome in a mouse model of focal ischemic stroke. Pregabalin administration (5 – 10 mg/kg, i.p.) 30-90 min after transient middle cerebral artery occlusion/reperfusion reduced infarct volume, neuronal death in the ischemic penumbra and neurological deficits at 24 h post-stroke. Pregabalin significantly decreased the amount of Ca2+/calpain-mediated α-spectrin proteolysis in the cerebral cortex measured at 6 h post-stroke. Together with the extensive clinical experience with pregabalin for other neurological indications, our findings suggest the potential for a therapeutic benefit of pregabalin in stroke patients.
doi:10.1016/j.nbd.2010.11.011
PMCID: PMC3031782  PMID: 21111818
calcium; calpain; cerebral ischemia; neuronal death; pregabalin; presynaptic calcium channels
23.  Plumbagin Promotes the Generation of Astrocytes from Rat Spinal Cord Neural Progenitors Via Activation of the Transcription Factor Stat3 
Journal of neurochemistry  2010;115(6):1337-1349.
Plumbagin (5-hydroxy-2-methyl-1,4 naphthoquinone) is a naturally occurring low molecular weight lipophilic phytochemical derived from roots of plants of the Plumbago genus. Plumbagin has been reported to have several clinically relevant biological activities in non-neural cells including antiatherosclerotic, anticoagulant, anticarcinogenic, antitumor and bactericidal effects. In a recent screen of a panel of botanical pesticides we identified plumbagin as having neuroprotective activity. In the present study we determined if plumbagin could modify the developmental fate of rat E14.5 embryonic neural progenitor cells (NPC). Plumbagin exhibited no cytotoxicity when applied to cultured NPC at concentrations below 1 µM. At a concentration of 0.1 µM, plumbagin significantly enhanced the proliferation of NPC as indicated by a 17% increase in the percentage of cells incorporating bromo-deoxyuridine. plumbagin at a concentration of 0.1 pM (but not 0.1 µM), stimulated the production of astrocytes as indicated by increased GFAP expression. Plumbagin selectively induced the proliferation and differentiation of glial progenitor cells without affecting the proliferation or differentiation of neuron-restricted progenitors. Plumbagin (0.1 pM) rapidly activated the transcription factor Stat3 in NPC, and a Stat3 inhibitor peptide prevented both plumbagin-induced astrocyte formation and proliferation. These findings demonstrate the ability of a low molecular weight naturally occurring phytochemical to control the fate of glial progenitor cells by a mechanism involving the Stat3 signaling pathway.
doi:10.1111/j.1471-4159.2010.06780.x
PMCID: PMC2928856  PMID: 20456019
Neural progenitors; neurogenesis; Stat3; GFAP; CNTF
24.  Sonic hedgehog promotes autophagy in hippocampal neurons 
Biology Open  2013;2(5):499-504.
Summary
The Sonic hedgehog (Shh) signaling pathway is well known in patterning of the neural tube during embryonic development, but its emerging role in differentiated neurons is less understood. Here we report that Shh enhances autophagy in cultured hippocampal neurons. Microarray analysis reveals the upregulation of multiple autophagy-related genes in neurons in response to Shh application. Through analysis of the autophagy-marker LC3 by immunoblot analysis and immunocytochemistry, we confirm activation of the autophagy pathway in Shh-exposed neurons. Using electron microscopy, we find autophagosomes and associated structures with a wide range of morphologies in synaptic terminals of Shh-exposed neurons. Moreover, we show that Shh-triggered autophagy depends on class III Phosphatidylinositol 3-kinase complexes (PtdIns3K). These results identify a link between Shh and autophagy pathways and, importantly, provide a lead for further understanding the physiology of Shh signaling activity in neurons.
doi:10.1242/bio.20134275
PMCID: PMC3654269  PMID: 23789099
Sonic hedgehog; Autophagy; Hippocampal neurons; Synapses
25.  The plasma membrane redox enzyme NQO1 sustains cellular energetics and protects human neuroblastoma cells against metabolic and proteotoxic stress 
Age  2011;34(2):359-370.
The plasma membrane redox system (PMRS) of nicotinamide adenine dinucleotide (NADH)-related enzymes plays a key role in the maintenance of cellular energetics. During the aging process, neural cells are particularly sensitive to impaired energy metabolism and oxidative damage, but the involvement of the PMRS in these processes is unknown. Here, we used human neuroblastoma cells with either elevated or reduced levels of the PMRS enzyme NADH-quinone oxidoreductase 1 (NQO1) to investigate how the PMRS regulates neuronal stress responses. Cells with elevated NQO1 levels were more resistant to death induced by 2-deoxyglucose, potassium cyanide (energetic stress), and lactacystin (proteotoxic stress), but were not protected from being killed by H2O2 and serum withdrawal. The NAD+(an oxidized form of NADH)/NADH ratio was maintained at a significantly higher level in cells overexpressing NQO1, consistent with enhanced levels of NQO1 activity. Levels of the neuroprotective transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells and nuclear factor (erythroid-derived 2)-like 2, and the protein chaperone HSP70 were elevated in cells overexpressing NQO1. Cells in which NQO1 levels were decreased by RNA interference exhibited increased vulnerability to death induced by 2-deoxyglucose and lactacystin. Thus, a higher NAD+/NADH ratio and activation of adaptive stress response pathways are enhanced by the PMRS in neuroblastoma cells, enabling them to maintain redox homeostasis under conditions of energetic and proteotoxic stress. These findings have implications for the development of therapeutic interventions for neural tumors and neurodegenerative conditions.
doi:10.1007/s11357-011-9245-1
PMCID: PMC3312640  PMID: 21487704
Aging; NAD+/NADH; Neuroprotection; NQO1; PMRS; Proteotoxicity

Results 1-25 (211)