PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Thioredoxin 1 Overexpression Extends Mainly the Earlier Part of Life Span in Mice 
We examined the effects of increased levels of thioredoxin 1 (Trx1) on resistance to oxidative stress and aging in transgenic mice overexpressing Trx1 [Tg(TRX1)+/0]. The Tg(TRX1)+/0 mice showed significantly higher Trx1 protein levels in all the tissues examined compared with the wild-type littermates. Oxidative damage to proteins and levels of lipid peroxidation were significantly lower in the livers of Tg(TRX1)+/0 mice compared with wild-type littermates. The survival study demonstrated that male Tg(TRX1)+/0 mice significantly extended the earlier part of life span compared with wild-type littermates, but no significant life extension was observed in females. Neither male nor female Tg(TRX1)+/0 mice showed changes in maximum life span. Our findings suggested that the increased levels of Trx1 in the Tg(TRX1)+/0 mice were correlated to increased resistance to oxidative stress, which could be beneficial in the earlier part of life span but not the maximum life span in the C57BL/6 mice.
doi:10.1093/gerona/glr125
PMCID: PMC3210956  PMID: 21873593
Thioredoxin; Transgenic mouse; Oxidative stress; Protein carbonylation; Aging
2.  Reduced Incidence and Delayed Occurrence of Fatal Neoplastic Diseases in Growth Hormone Receptor/Binding Protein Knockout Mice 
Although studies of Ames and Snell dwarf mice have suggested possible important roles of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in aging and age-related diseases, the results cannot rule out the possibility of other hormonal changes playing an important role in the life extension exhibited by these dwarf mice. Therefore, growth hormone receptor/binding protein (GHR/BP) knockout (KO) mice would be valuable animals to directly assess the roles of somatotropic axis in aging and age-related diseases because the primary hormonal change is due to GH/IGF-1 deficiency. Our pathological findings showed GHR/BP KO mice to have a lower incidence and delayed occurrence of fatal neoplastic lesions compared with their wild-type littermates. These changes of fatal neoplasms are similar to the effects observed with calorie restriction and therefore could possibly be a major contributing factor to the extended life span observed in the GHR/BP KO mice.
doi:10.1093/gerona/glp017
PMCID: PMC2667132  PMID: 19228785
Growth hormone receptor/binding protein; Knockout mouse; Neoplastic disease; Aging
3.  Do long-lived mutant and calorie-restricted mice share common anti-aging mechanisms?—a pathological point of view 
Age  2006;28(2):163-171.
Rodent models are an invaluable resource for studying the mechanism of mammalian aging. In recent years, the availability of transgenic and knockout mouse models has facilitated the study of potential mechanisms of aging. Since 1996, aging studies with several long-lived mutant mice have been conducted. Studies with the long-lived mutant mice, Ames and Snell dwarf, and growth hormone receptor/binding protein knockout mice, are currently providing important clues regarding the role of the growth hormone/insulin like growth factor-1 axis in the aging process. Interestingly, these studies demonstrate that these long-lived mutant mice have physiological characteristics that are similar to the effects of calorie restriction, which has been the most effective experimental manipulation capable of extending lifespan in various species. However, a question remains to be answered: do these long-lived mutant and calorie-restricted mice extend their lifespan through a common underlying mechanism?
doi:10.1007/s11357-006-9007-7
PMCID: PMC2464730  PMID: 19943137
aging; growth hormone receptor/binding protein; knockout mouse; neoplastic disease

Results 1-3 (3)