PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Early resuscitation of dengue shock syndrome in children with hyperosmolar sodium-lactate: a randomized single-blind clinical trial of efficacy and safety 
Critical Care  2014;18(5):466.
Introduction
Dengue shock syndrome (DSS) fluid resuscitation by following the World Health Organization (WHO) guideline usually required large volumes of Ringer lactate (RL) that might induce secondary fluid overload. Our objective was to compare the effectiveness of the recommended volume of RL versus a smaller volume of a hypertonic sodium lactate solution (HSL) in children with DSS. The primary end point was to evaluate the effect of HSL on endothelial cell inflammation, assessed by soluble vascular cell adhesion molecule-1 (sVCAM-1) measurements. Secondarily, we considered the effectiveness of HSL in restoring hemodynamic fluid balance, acid–base status, and sodium and chloride balances, as well as in-hospital survival.
Methods
A prospective randomized single-blind clinical trial including 50 DSS children was conducted in the Pediatrics Department of Hasan Sadikin Hospital, Bandung, Indonesia. Only pediatric patients (2 to 14 years old) fulfilling the WHO criteria for DSS and new to resuscitation treatments were eligible. Patients were resuscitated with either HSL (5 ml/kg/BW in 15 minutes followed by 1 ml/kg/BW/h for 12 hours), or RL (20 ml/kg/BW in 15 minutes followed by decreasing doses of 10, 7, 5, and 3 ml/kg BW/h for 12 hours).
Results
In total, 50 patients were randomized and included in outcome and adverse-event analysis; 46 patients (8.2 ± 0.5 years; 24.9 ± 1.9 kg; mean ± SEM) completed the protocol and were fully analyzed (24 and 22 subjects in the HSL and RL groups, respectively). Baseline (prebolus) data were similar in both groups. Hemodynamic recovery, plasma expansion, clinical outcome, and survival rate were not significantly different in the two groups, whereas fluid accumulation was one third lower in the HSL than in the RL group. Moreover, HSL was responsible for a partial recovery from endothelial dysfunction, as indicated by the significant decrease in sVCAM-1.
Conclusion
Similar hemodynamic shock recovery and plasma expansion were achieved in both groups despite much lower fluid intake and fluid accumulation in the HSL group.
Trial Registration
ClinicalTrials.gov NCT00966628. Registered 26 August 2009.
doi:10.1186/s13054-014-0466-4
PMCID: PMC4172842  PMID: 25189175
2.  Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomised controlled clinical trial 
Critical Care  2014;18(2):R48.
Introduction
Acute heart failure (AHF) is characterized by inadequate cardiac output (CO), congestive symptoms, poor peripheral perfusion and end-organ dysfunction. Treatment often includes a combination of diuretics, oxygen, positive pressure ventilation, inotropes and vasodilators or vasopressors. Lactate is a marker of illness severity but is also an important metabolic substrate for the myocardium at rest and during stress. We tested the effects of half-molar sodium lactate infusion on cardiac performance in AHF.
Methods
We conducted a prospective, randomised, controlled, open-label, pilot clinical trial in 40 patients fulfilling two of the following three criteria for AHF: (1) left ventricular ejection fraction <40%, (2) acute pulmonary oedema or respiratory failure of predominantly cardiac origin requiring mechanical ventilation and (3) currently receiving vasopressor and/or inotropic support. Patients in the intervention group received a 3 ml/kg bolus of half-molar sodium lactate over the course of 15 minutes followed by 1 ml/kg/h continuous infusion for 24 hours. The control group received only a 3 ml/kg bolus of Hartmann’s solution without continuous infusion. The primary outcome was CO assessed by transthoracic echocardiography 24 hours after randomisation. Secondary outcomes included a measure of right ventricular systolic function (tricuspid annular plane systolic excursion (TAPSE)), acid-base balance, electrolyte and organ function parameters, along with length of stay and mortality.
Results
The infusion of half-molar sodium lactate increased (mean ± SD) CO from 4.05 ± 1.37 L/min to 5.49 ± 1.9 L/min (P < 0.01) and TAPSE from 14.7 ± 5.5 mm to 18.3 ± 7 mm (P = 0.02). Plasma sodium and pH increased (136 ± 4 to 146 ± 6 and 7.40 ± 0.06 to 7.53 ± 0.03, respectively; both P < 0.01), but potassium, chloride and phosphate levels decreased. There were no significant differences in the need for vasoactive therapy, respiratory support, renal or liver function tests, duration of ICU and hospital stay or 28- and 90-day mortality.
Conclusions
Infusion of half-molar sodium lactate improved cardiac performance and led to metabolic alkalosis in AHF patients without any detrimental effects on organ function.
Trial registration
Clinicaltrials.gov NCT01981655. Registered 13 August 2013.
doi:10.1186/cc13793
PMCID: PMC4057379  PMID: 24666826
3.  Middle age aggravates myocardial ischemia through surprising upholding of complex II activity, oxidative stress, and reduced coronary perfusion 
Age  2010;33(3):321-336.
Aging compromises restoration of the cardiac mechanical function during reperfusion. We hypothesized that this was due to an ampler release of mitochondrial reactive oxygen species (ROS). This study aimed at characterising ex vivo the mitochondrial ROS release during reperfusion in isolated perfused hearts of middle-aged rats. Causes and consequences on myocardial function of the observed changes were then evaluated. The hearts of rats aged 10- or 52-week old were subjected to global ischemia followed by reperfusion. Mechanical function was monitored throughout the entire procedure. Activities of the respiratory chain complexes and the ratio of aconitase to fumarase activities were determined before ischemia and at the end of reperfusion. H2O2 release was also evaluated in isolated mitochondria. During ischemia, middle-aged hearts displayed a delayed contracture, suggesting a maintained ATP production but also an increased metabolic proton production. Restoration of the mechanical function during reperfusion was however reduced in the middle-aged hearts, due to lower recovery of the coronary flow associated with higher mitochondrial oxidative stress indicated by the aconitase to fumarase ratio in the cardiac tissues. Surprisingly, activity of the respiratory chain complex II was better maintained in the hearts of middle-aged animals, probably because of an enhanced preservation of its membrane lipid environment. This can explain the higher mitochondrial oxidative stress observed in these conditions, since cardiac mitochondria produce much more H2O2 when they oxidize FADH2-linked substrates than when they use NADH-linked substrates. In conclusion, the lower restoration of the cardiac mechanical activity during reperfusion in the middle-aged hearts was due to an impaired recovery of the coronary flow and an insufficient oxygen supply. The deterioration of the coronary perfusion was explained by an increased mitochondrial ROS release related to the preservation of complex II activity during reperfusion.
doi:10.1007/s11357-010-9186-0
PMCID: PMC3168590  PMID: 20878490
Myocardial aging; Ischemia; Oxidative stress; Respiratory chain complexes
4.  Ubiquinone Analogs: A Mitochondrial Permeability Transition Pore-Dependent Pathway to Selective Cell Death 
PLoS ONE  2010;5(7):e11792.
Background
Prolonged opening of the mitochondrial permeability transition pore (PTP) leads to cell death. Various ubiquinone analogs have been shown to regulate PTP opening but the outcome of PTP regulation by ubiquinone analogs on cell fate has not been studied yet.
Methodology/Principal Findings
The effects of ubiquinone 0 (Ub0), ubiquinone 5 (Ub5), ubiquinone 10 (Ub10) and decyl-ubiquinone (DUb) were studied in freshly isolated rat hepatocytes, cultured rat liver Clone-9 cells and cancerous rat liver MH1C1 cells. PTP regulation by ubiquinones differed significantly in permeabilized Clone-9 and MH1C1 cells from that previously reported in liver mitochondria. Ub0 inhibited PTP opening in isolated hepatocytes and Clone-9 cells, whereas it induced PTP opening in MH1C1 cells. Ub5 did not affect PTP opening in isolated hepatocytes and MH1C1 cells, but it induced PTP opening in Clone-9 cells. Ub10 regulated PTP in isolated hepatocytes, whereas it did not affect PTP opening in Clone-9 and MH1C1 cells. Only DUb displayed the same effect on PTP regulation in the three hepatocyte lines tested. Despite such modifications in PTP regulation, competition between ubiquinones still occurred in Clone-9 and MH1C1 cells. As expected, Ub5 induced a PTP-dependent cell death in Clone-9, while it did not affect MH1C1 cell viability. Ub0 induced a PTP-dependent cell death in MH1C1 cells, but was also slightly cytotoxic in Clone-9 by an oxidative stress-dependent mechanism.
Conclusions/Significance
We found that various ubiquinone analogs regulate PTP in different ways depending on the cell studied. We took advantage of this unique property to develop a PTP opening-targeted strategy that leads to cell death specifically in cells where the ubiquinone analog used induces PTP opening, while sparing the cells in which it does not induce PTP opening.
doi:10.1371/journal.pone.0011792
PMCID: PMC2909912  PMID: 20668684
5.  Lactate in the intensive care unit: pyromaniac, sentinel or fireman? 
Critical Care  2005;9(6):622-623.
Lactate, indispensable substrate of mammalian intermediary metabolism, allows shuttling of carbons and reducing power between cells and organs at a high turnover rate. Lactate is, therefore, not deleterious, although an increase in its concentration is often a sensitive sign of alteration in energy homeostasis, a rise in it being frequently related to poor prognosis. Such an increase, however, actually signifies an attempt by the body to cope with a new energy status. Hyperlactatemia, therefore, most often represents an adaptive response to an acute energy disorder. Investigation of lactate metabolism at the bedside is limited to the determination of its concentration. Lactate metabolism and acid-base homeostasis are both closely linked to cellular energy metabolism, acidosis being potentially a cause or a consequence of cellular energy deficit.
doi:10.1186/cc3935
PMCID: PMC1414051  PMID: 16356247
6.  Lactate: A key metabolite in the intercellular metabolic interplay 
Critical Care  2002;6(4):284-285.
Most physicians involved in intensive care consider lactate solely as a deleterious metabolite, responsible for high morbidity and bad prognosis in severe patients. For the physiologist, however, lactate is a key metabolite, alternatively produced or consumed. Many studies in the literature have infused animals or humans with exogenous lactate, demonstrating its safety and usefulness, but the bad reputation of lactate is still widespread. The metabolic meaning of glucose–lactate cycling exceeds its initial role described by Cori and Cori. According to recent works concerning lactate, it can be predicted that a new role as a therapeutic agent will arise for this metabolite.
PMCID: PMC137304  PMID: 12225597
brain; Cori cycle; exogenous substrate; kidney; lung; metabolic shuttle

Results 1-6 (6)