PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Telomere-Binding Protein TPP1 Modulates Telomere Homeostasis and Confers Radioresistance to Human Colorectal Cancer Cells 
PLoS ONE  2013;8(11):e81034.
Background
Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear.
Principal Findings
In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telomere length in human colorectal cancer cell lines. Moreover, TPP1 overexpression showed lengthened telomere length and a significant decrease of radiosensitivity to X-rays. TPP1 mediated radioresistance was correlated with a decreased apoptosis rate after IR exposure. Furthermore, TPP1 overexpression showed prolonged G2/M arrest mediated by ATM/ATR-Chk1 signal pathway after IR exposure. Moreover, TPP1 overexpression accelerated the repair kinetics of total DNA damage and telomere dysfunction induced by ionizing radiation.
Conclusions
We demonstrated that elevated expressions of TPP1 in human colorectal cancer cells could protect telomere from DNA damage and confer radioresistance. These results suggested that TPP1 may be a potential target in the radiotherapy of colorectal cancer.
doi:10.1371/journal.pone.0081034
PMCID: PMC3834294  PMID: 24260532
2.  Enhanced SCAP Glycosylation by Inflammation Induces Macrophage Foam Cell Formation 
PLoS ONE  2013;8(10):e75650.
Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs) Cleavage-Activating Protein (SCAP) glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR) feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER) to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form). As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam cell formation.
doi:10.1371/journal.pone.0075650
PMCID: PMC3797718  PMID: 24146768
3.  Inhibition of UBE2D3 Expression Attenuates Radiosensitivity of MCF-7 Human Breast Cancer Cells by Increasing hTERT Expression and Activity 
PLoS ONE  2013;8(5):e64660.
The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H) screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R) cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3) as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1.
doi:10.1371/journal.pone.0064660
PMCID: PMC3669415  PMID: 23741361
4.  Aging-related kidney damage is associated with a decrease in klotho expression and an increase in superoxide production 
Age  2010;33(3):261-274.
The purpose of this study was to determine changes in klotho, endothelin (ET) receptors, and superoxide production in kidneys of aged rats and whether these changes are exacerbated in aged rats with cognitive impairment. Twenty aged rats (male, 27 months) were divided into an Old Impaired group (n = 9) and an Old Intact group (n = 11) according to a cognitive function test. A group of 12-month-old rats (n = 10) was used as a Young Intact group. Serum creatinine was increased significantly in the Old Impaired group, suggesting impaired renal function. Aged rats showed glomerulosclerosis and tubulointerstitialfibrosis. These pathological changes were markedly aggravated in the old cognitively impaired than in the old cognitively intact animals. Notably, aged rats demonstrated a significant decrease in klotho protein expression in renal cortex and medulla. Protein expression of IL-6, Nox2, ETa receptors and superoxide production were increased whereas mitochondrial SOD (MnSOD) and ETb receptors expression were decreased in kidneys of the aged rats. Interestingly, these changes were more pronounced in the old impaired than in the old intact rats. In conclusion, the aging-related kidney damage was exacerbated in aged rats with cognitive impairment. Klotho, ETB, and MnSOD were downregulated but ETa, IL-6, Nox2, and superoxide production were upregulated in the aging-related kidney damage. These changes were more pronounced in rats with cognitive impairment.
doi:10.1007/s11357-010-9176-2
PMCID: PMC3168600  PMID: 20830528
Aging; Klotho; Glomerusclerosis; ET receptor; Superoxide; Interleukin-6
5.  Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain 
Scientific Reports  2012;2:436.
Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, Salmonella Typhimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do.
doi:10.1038/srep00436
PMCID: PMC3365283  PMID: 22666539
6.  The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes 
MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3′ untranslated regions (3′UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3′UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3′UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.
doi:10.1590/S0100-879X2012007500007
PMCID: PMC3854259  PMID: 22267003
MicroRNAs; miR-17-92; FOG-2; Proliferation
7.  Evaluation of Oral Immunization with Recombinant Avian Influenza Virus HA1 Displayed on the Lactococcus lactis Surface and Combined with the Mucosal Adjuvant Cholera Toxin Subunit B ▿ 
The development of safe and efficient avian influenza vaccines for human and animal uses is essential for preventing virulent outbreaks and pandemics worldwide. In this study, we constructed a recombinant (pgsA-HA1 gene fusion) Lactococcus lactis strain that expresses and displays the avian influenza virus HA1 antigens on its surface. The vectors were administered by oral delivery with or without the addition of cholera toxin subunit B (CTB). The resulting immune responses were analyzed, and the mice were eventually challenged with lethal doses of H5N1 viruses. Significant titers of hemagglutinin (HA)-specific serum IgG and fecal IgA were detected in the group that also received CTB. Cellular immunities were also shown in both cell proliferation and gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays. Most importantly, the mice that received the L. lactis pgsA-HA1 strain combined with CTB were completely protected from lethal challenge of the H5N1 virus. These findings support the further development of L. lactis-based avian influenza virus vaccines for human and animal uses.
doi:10.1128/CVI.00050-11
PMCID: PMC3147322  PMID: 21632890
8.  MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN 
BMC Cancer  2010;10:367.
Background
MicroRNAs (miRNAs) can function as either oncogenes or tumor suppressor genes via regulation of cell proliferation and/or apoptosis. MiR-221 and miR-222 were discovered to induce cell growth and cell cycle progression via direct targeting of p27 and p57 in various human malignancies. However, the roles of miR-221 and miR-222 have not been reported in human gastric cancer. In this study, we examined the impact of miR-221 and miR-222 on human gastric cancer cells, and identified target genes for miR-221 and miR-222 that might mediate their biology.
Methods
The human gastric cancer cell line SGC7901 was transfected with AS-miR-221/222 or transduced with pMSCV-miR-221/222 to knockdown or restore expression of miR-221 and miR-222, respectively. The effects of miR-221 and miR-222 were then assessed by cell viability, cell cycle analysis, apoptosis, transwell, and clonogenic assay. Potential target genes were identified by Western blot and luciferase reporter assay.
Results
Upregulation of miR-221 and miR-222 induced the malignant phenotype of SGC7901 cells, whereas knockdown of miR-221 and miR-222 reversed this phenotype via induction of PTEN expression. In addition, knockdonwn of miR-221 and miR-222 inhibited cell growth and invasion and increased the radiosensitivity of SGC7901 cells. Notably, the seed sequence of miR-221 and miR-222 matched the 3'UTR of PTEN, and introducing a PTEN cDNA without the 3'UTR into SGC7901 cells abrogated the miR-221 and miR-222-induced malignant phenotype. PTEN-3'UTR luciferase reporter assay confirmed PTEN as a direct target of miR-221 and miR-222.
Conclusion
These results demonstrate that miR-221 and miR-222 regulate radiosensitivity, and cell growth and invasion of SGC7901 cells, possibly via direct modulation of PTEN expression. Our study suggests that inhibition of miR-221 and miR-222 might form a novel therapeutic strategy for human gastric cancer.
doi:10.1186/1471-2407-10-367
PMCID: PMC2914702  PMID: 20618998

Results 1-8 (8)