PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Impact of Aging on Mitochondrial Function and Biogenesis Pathways in Skeletal Muscle of Sedentary High- and Low-Functioning Elderly Individuals 
Aging cell  2012;11(5):801-809.
Summary
Age-related loss of muscle mass and strength (sarcopenia) leads to a decline in physical function and frailty in the elderly. Among the many proposed underlying causes of sarcopenia, mitochondrial dysfunction is inherent in a variety of aged tissues. The intent of this study was to examine the effect of aging on key groups of regulatory proteins involved in mitochondrial biogenesis and how this relates to physical performance in two groups of sedentary elderly participants, classified as high- and low-functioning based on the Short Physical Performance Battery test. Muscle mass was decreased by 38% and 30% in low-functioning elderly (LFE) participants when compared to young and high-functioning elderly (HFE) participants, respectively, and positively correlated to physical performance. Mitochondrial respiration in permeabilized muscle fibers was reduced (41%) in the LFE group when compared to the young, and this was associated with a 30% decline in COX activity. Levels of key metabolic regulators, SIRT3 and PGC-1α were significantly reduced (50%) in both groups of elderly participants when compared to young. Similarly, the fusion protein OPA1 was lower in muscle from elderly subjects, however no changes were detected in Mfn2, Drp1 or Fis1 among the groups. In contrast, protein import machinery (PIM) components Tom22 and cHsp70 were increased in the LFE group when compared to the young. This study suggests that aging in skeletal muscle is associated with impaired mitochondrial function and altered biogenesis pathways, and that this may contribute to muscle atrophy and the decline in muscle performance observed in the elderly population.
doi:10.1111/j.1474-9726.2012.00844.x
PMCID: PMC3444680  PMID: 22681576
aging; sarcopenia; mitochondria; skeletal muscle; PGC-1α
3.  Differential effects of enalapril and losartan on body composition and indices of muscle quality in aged male Fischer 344 × Brown Norway rats 
Age  2010;33(2):167-183.
The primary purpose of the present set of studies was to provide a direct comparison of the effects of the angiotensin-converting enzyme inhibitor enalapril and the angiotensin receptor blocker losartan on body composition, physical performance, and muscle quality when administered late in life to aged rats. Overall, enalapril treatment consistently attenuated age-related increases in adiposity relative to both placebo and losartan. The maximal effect was achieved after 3 months of treatment (between 24 and 27 months of age), at a dose of 40 mg/kg and was observed in the absence of any changes in physical activity, body temperature, or food intake. In addition, the reduction in fat mass was not due to changes in pathology given that enalapril attenuated age-related increases in tumor development relative to placebo- and losartan-treated animals. Both enalapril and losartan attenuated age-related decreases in grip strength, suggesting that changes in body composition appear dissociated from improvements in physical function and may reflect a differential impact of enalapril and losartan on muscle quality. To link changes in adiposity to improvements in skeletal muscle quality, we performed gene array analyses to generate hypotheses regarding cell signaling pathways altered with enalapril treatment. Based on these results, our primary follow-up pathway was mitochondria-mediated apoptosis of myocytes. Relative to losartan- and placebo-treated rats, only enalapril decreased DNA fragmentation and caspase-dependent apoptotic signaling. These data suggest that attenuation of the severity of skeletal muscle apoptosis promoted by enalapril may represent a distinct mechanism through which this compound improves muscle strength/quality.
doi:10.1007/s11357-010-9196-y
PMCID: PMC3127467  PMID: 21153712
Age-related adiposity; Body composition; Sarcopenia; Renin–angiotensin system; Physical function; Muscle quality
4.  An Exploratory Analysis of the Effects of a Weight Loss Plus Exercise Program on Cellular Quality Control Mechanisms in Older Overweight Women 
Rejuvenation Research  2011;14(3):315-324.
Abstract
Obese older adults are particularly susceptible to sarcopenia and have a higher prevalence of disability than their peers of normal weight. Interventions to improve body composition in late life are crucial to maintaining independence. The main mechanisms underlying sarcopenia have not been determined conclusively, but chronic inflammation, apoptosis, and impaired mitochondrial function are believed to play important roles. It has yet to be determined whether impaired cellular quality control mechanisms contribute to this process. The objective of this study was to assess the effects of a 6-month weight loss program combined with moderate-intensity exercise on the cellular quality control mechanisms autophagy and ubiquitin-proteasome, as well as on inflammation, apoptosis, and mitochondrial function, in the skeletal muscle of older obese women. The intervention resulted in significant weight loss (8.0 ± 3.9 % vs. 0.4 ± 3.1% of baseline weight, p = 0.002) and improvements in walking speed (reduced time to walk 400 meters, − 20.4 ± 16% vs. − 2.5 ± 12%, p = 0.03). In the intervention group, we observed a three-fold increase in messenger RNA (mRNA) levels of the autophagy regulators LC3B, Atg7, and lysosome-associated membrane protein-2 (LAMP-2) compared to controls. Changes in mRNA levels of FoxO3A and its targets MuRF1, MAFBx, and BNIP3 were on average seven-fold higher in the intervention group compared to controls, but these differences were not statistically significant. Tumor necrosis factor-α (TNF-α) mRNA levels were elevated after the intervention, but we did not detect significant changes in the downstream apoptosis markers caspase 8 and 3. Mitochondrial biogenesis markers (PGC1α and TFAm) were increased by the intervention, but this was not accompanied by significant changes in mitochondrial complex content and activity. In conclusion, although exploratory in nature, this study is among the first to report the stimulation of cellular quality control mechanisms elicited by a weight loss and exercise program in older obese women.
doi:10.1089/rej.2010.1132
PMCID: PMC3136739  PMID: 21631380
5.  Skeletal Muscle Apoptotic Signaling Predicts Thigh Muscle Volume and Gait Speed in Community-Dwelling Older Persons: An Exploratory Study 
PLoS ONE  2012;7(2):e32829.
Background
Preclinical studies strongly suggest that accelerated apoptosis in skeletal myocytes may be involved in the pathogenesis of sarcopenia. However, evidence in humans is sparse. In the present study, we investigated whether apoptotic signaling in the skeletal muscle was associated with indices of muscle mass and function in older persons.
Methodology/Principal Findings
Community-dwelling older adults were categorized into high-functioning (HF) or low-functioning (LF) groups according to their short physical performance battery (SPPB) summary score. Participants underwent an isokinetic knee extensor strength test and 3-dimensional magnetic resonance imaging of the thigh. Vastus lateralis muscle samples were obtained by percutaneous needle biopsy and assayed for the expression of a set of apoptotic signaling proteins. Age, sex, number of comorbid conditions and medications as well as knee extensor strength were not different between groups. HF participants displayed greater thigh muscle volume compared with LF persons. Multivariate partial least squares (PLS) regressions showed significant correlations between caspase-dependent apoptotic signaling proteins and the muscular percentage of thigh volume (R2 = 0.78; Q2 = 0.61) as well as gait speed (R2 = 0.81; Q2 = 0.56). Significant variables in the PLS model of percent muscle volume were active caspase-8, cleaved caspase-3, cytosolic cytochrome c and mitochondrial Bak. The regression model of gait speed was mainly described by cleaved caspase-3 and mitochondrial Bax and Bak. PLS predictive apoptotic variables did not differ between functional groups. No correlation was determined between apoptotic signaling proteins and muscle strength or quality (strength per unit volume).
Conclusions/Significance
Data from this exploratory study show for the first time that apoptotic signaling is correlated with indices of muscle mass and function in a cohort of community-dwelling older persons. Future larger-scale studies are needed to corroborate these preliminary findings and determine if down-regulation of apoptotic signaling in skeletal myocytes will provide improvements in the muscle mass and functional status of older persons.
doi:10.1371/journal.pone.0032829
PMCID: PMC3289676  PMID: 22389725
6.  Myogenic and proteolytic mRNA expression following blood flow restricted exercise 
Acta physiologica (Oxford, England)  2011;201(2):255-263.
Aim
Resistance exercise performed at low loads (20-30% of maximal strength) with blood flow restriction (BFR) acutely increases protein synthesis and induces hypertrophy when performed chronically. We investigated myogenic and proteolytic mRNA expression 8 hrs following an acute bout of knee extension exercise
Methods
Fifteen subjects (22.8 ± 3.7 yrs, 8 men and 7 women) were randomized to two exercise conditions: BFR or control exercise. All participants performed 4 sets of exercise (30, 15, 15 & 15 repetitions) at 20% of maximal strength. Persons in the BFR group had a cuff placed on the upper thigh inflated to 1.5 times brachial systolic blood pressure (cuff pressure range: 135-186 mmHg). Muscle biopsies from the vastus lateralis were excised 24 hrs before and 8 hrs following the exercise.
Results
RT-PCR analysis demonstrated no change in myogenic gene expression (IGF-1, MyoD, Myogenin, Myostatin – a negative regulator) with either exercise condition (p > 0.123). However, BFR exercise downregulated mRNA expression in transcripts associated with proteolytic pathways (FOXO3A, Atrogin-1 and MuRF-1) with no change in the control exercise condition. Specifically, median mRNA expression of FOXO3A decreased by 1.92 fold (p = 0.01), Atrogin-1 by 2.10 fold (p = 0.01) and MuRF-1 by 2.44 fold (p = 0.01).
Conclusion
These data are consistent with the downregulation of proteolytic transcripts observed following high load resistance exercise. In summary, myogenic genes are unchanged and proteolytic genes associated with muscle remodeling are reduced 8 hours following low load BFR exercise.
doi:10.1111/j.1748-1716.2010.02172.x
PMCID: PMC3095818  PMID: 20653608
KAATSU; Blood flow restriction; gene expression; mRNA; muscle
7.  Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise 
Experimental gerontology  2009;45(2):138-148.
Sarcopenia, loss of muscle mass and function, is a common feature of aging. Oxidative damage and apoptosis are likely underlying factors. Autophagy, a process for the degradation of cellular constituents, may be a mechanism to combat cell damage and death. We investigated the effect of age on autophagy and apoptosis in plantaris muscle of male Fischer344 rats that were either fed ad libitum, or mild, life-long calorie restricted (CR) alone or combined with life-long voluntary exercise. Upstream autophagy regulatory proteins were either upregulated with age (Beclin-1) or unchanged (Atg7 and 9). LC3 gene and protein expression pattern as well as LAMP-2 gene expression, both downstream regulators of autophagy, however, suggested an age-related decline in autophagic degradation. Atg protein expression and LC3 and LAMP-2 gene expression were improved in CR rats with or without exercise. The age-related increase in oxidative damage and apoptosis were attenuated by the treatments. Both, oxidative damage and apoptosis correlated negatively with autophagy. We conclude that mild CR attenuates the age-related impairment of autophagy in rodent skeletal muscle, which might be one of the mechanisms by which CR attenuates age-related cellular damage and cell death in skeletal muscle in vivo.
doi:10.1016/j.exger.2009.11.002
PMCID: PMC2829942  PMID: 19903516
Autophagy; plantaris; aging; apoptosis; calorie restriction; exercise; wheel running
8.  Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction 
TNF-α-mediated apoptosis is enhanced in aged rodent muscles, suggesting that this pathway may be involved in sarcopenia. Interleukin-15 (IL-15), a muscle-derived anabolic cytokine, mitigates muscle wasting and apoptosis in cachectic rats. This effect is thought to occur through inhibition of TNF-α-triggered apoptosis. We investigated IL-15 signaling and the TNF-α-mediated pathway of apoptosis in the gastrocnemius muscle of Fischer344×Brown Norway rats across the ages of 8, 18, 29 and 37 months, in relation to life-long calorie restriction (CR, 40% calorie intake reduction). Aging caused loss of muscle mass and increased apoptotic DNA fragmentation, which were mitigated by CR. Protein levels of IL-15 and mRNA abundance of IL-15 receptor α-chain decreased in senescent ad libitum (AL) fed rats, but were maintained in CR rodents. Elevations of TNF-α, TNF-receptor 1, cleaved caspase-8 and -3 were observed at advanced age in AL rats. These changes were prevented or mitigated by CR. Our results indicate that aging is associated with decreased IL-15 signaling in rat gastrocnemius muscle, which may contribute to sarcopenia partly through enhanced TNF-α-mediated apoptosis. Preservation of IL-15 signaling by CR may therefore represent a further mechanism contributing to the anti-aging effect of this dietary intervention in skeletal muscle.
doi:10.1016/j.mad.2008.12.008
PMCID: PMC2768529  PMID: 19396981
sarcopenia; interleukin-15; tumor necrosis factor-α; calorie restriction; apoptosis
9.  Mitochondrial death effectors: Relevance to sarcopenia and disuse muscle atrophy 
Biochimica et biophysica acta  2009;1800(3):235-244.
Accelerated apoptosis in skeletal muscle is increasingly recognized as a potential mechanism contributing to the development of sarcopenia of aging and disuse muscle atrophy. Given their central role in the regulation of apoptosis, mitochondria are regarded as key players in the pathogenesis of myocyte loss during aging and other atrophying conditions. Oxidative damage to mitochondrial constituents, impaired respiration and altered mitochondrial turnover have been proposed as potential triggering events for mitochondrial apoptotic signaling. In addition, iron accumulation within mitochondria may enhance the susceptibility to apoptosis during the development of sarcopenia and possibly acute muscle atrophy, likely through exacerbation of oxidative stress. Mitochondria can induce myocyte apoptosis via both caspase-dependent and independent pathways, although the apoptogenic mediators involved may be different depending on age, muscle type and specific atrophying conditions. Despite the considerable advances made, additional research is necessary to establish a definite causal link between apoptotic signaling and the development of sarcopenia and acute atrophy. Furthermore, a translational effort is required to determine the role played by apoptosis in the pathogenesis of sarcopenia and disuse-induced muscle loss in human subjects.
doi:10.1016/j.bbagen.2009.05.007
PMCID: PMC2826514  PMID: 19450666
Mitochondria; Iron; Sarcopenia; Muscle atrophy; Apoptosis; Caspases; Endonuclease G; Apoptosis-inducing factor
10.  Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle 
Mitochondria-mediated apoptosis represents a central process driving age-related muscle loss. However, the temporal relation between mitochondrial apoptotic signaling and sarcopenia as well as the regulation of release of pro-apoptotic factors from the mitochondria has not been elucidated. In this study, we investigated mitochondrial apoptotic signaling in skeletal muscle of rats across a wide age range. We also investigated whether mitochondrial-driven apoptosis was accompanied by changes in the expression of Bcl-2 proteins and components of the mitochondrial permeability transition pore (mPTP). Analyses were performed on gastrocnemius muscle of 8-, 18-, 29- and 37- month-old male Fischer344×Brown Norway rats (9 per group). Muscle weight declined progressively with advancing age, concomitant with increased apoptotic DNA fragmentation. Cytosolic and nuclear levels of apoptosis inducing factor (AIF) and endonuclease G (EndoG) increased in old and senescent animals. In contrast, cytosolic levels of cytochrome c were unchanged with age. Mitochondrial Bcl-2, Bax and Bid increased dramatically in 37-month-old rats, with no changes in the Bax/Bcl-2 ratio in any of the age groups. Finally, expression of cyclophilin D was enhanced at very old age. Our findings indicate that the mitochondrial caspase-independent apoptotic pathway may play a more prominent role in skeletal muscle loss than caspase-mediated apoptosis.
doi:10.1016/j.mad.2008.05.005
PMCID: PMC2585824  PMID: 18579179
sarcopenia; apoptosis; permeability transition pore; AIF; endonuclease G

Results 1-10 (10)