PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Are Happy Faces Attractive? The Roles of Early vs. Late Processing 
Frontiers in Psychology  2015;6:1812.
Facial attractiveness is closely related to romantic love. To understand if the neural underpinnings of perceived facial attractiveness and facial expression are similar constructs, we recorded neural signals using an event-related potential (ERP) methodology for 20 participants who were viewing faces with varied attractiveness and expressions. We found that attractiveness and expression were reflected by two early components, P2-lateral (P2l) and P2-medial (P2m), respectively; their interaction effect was reflected by LPP, a late component. The findings suggested that facial attractiveness and expression are first processed in parallel for discrimination between stimuli. After the initial processing, more attentional resources are allocated to the faces with the most positive or most negative valence in both the attractiveness and expression dimensions. The findings contribute to the theoretical model of face perception.
doi:10.3389/fpsyg.2015.01812
PMCID: PMC4663264  PMID: 26648885
face; attractiveness; expression; ERP; P2; LPP
2.  Traumatic Brain Injury Rehabilitation in Hong Kong: A Review of Practice and Research 
Behavioural Neurology  2015;2015:274326.
Background. The rising public health concern regarding traumatic brain injury (TBI) implies a growing need for rehabilitation services for patients surviving TBI. Methods. To this end, this paper reviews the practices and research on TBI rehabilitation in Hong Kong so as to inform future developments in this area. This paper begins by introducing the general situation of TBI patients in Hong Kong and the need for rehabilitation. Next, the trauma system in Hong Kong is introduced. Following that is a detailed description of the rehabilitation services for TBI patients in Hong Kong, as exemplified by a rehabilitation hospital in Hong Kong. This paper will also review intervention studies on rehabilitating brain-injured populations in Hong Kong with respect to various rehabilitation goals. Lastly, the implications of culture-related issues will be discussed in relation to TBI. Results/Conclusions. The intervention studies conducted in Hong Kong are generally successful in achieving various rehabilitative outcomes. Additionally, certain cultural-related issues, such as the stigma associated with TBI, may impede the rehabilitative process and lead to various psychosocial problems.
doi:10.1155/2015/274326
PMCID: PMC4617702  PMID: 26557738
3.  Neural Plastic Effects of Cognitive Training on Aging Brain 
Neural Plasticity  2015;2015:535618.
Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age.
doi:10.1155/2015/535618
PMCID: PMC4568366  PMID: 26417460
4.  Mindfulness Trait Predicts Neurophysiological Reactivity Associated with Negativity Bias: An ERP Study 
This study explored the relationship of mindfulness trait with the early and late stages of affective processing, by examining the two corresponding ERP components, P2 and LPP, collected from twenty-two male Chinese participants with a wide range of meditation experiences. Multiple regression analyses was performed on the mindfulness scores, as measured by CAMS-R, with the subjective affective ratings and ERP data collected during an emotion processing task. The results showed that increased mindfulness scores predicted increased valence ratings of negative stimuli (less negative), as well as increased P2 amplitudes at the frontocentral location for positive compared to negative stimuli. Based on these findings, a plausible mechanism of mindfulness in reducing negativity bias was discussed. Moreover, our results replicated previous findings on the age-related increase of P2 amplitudes at the frontal sites for positive compared to neutral stimuli. Since the locations at which P2 amplitudes were found as associated with age and mindfulness differed, as did the emotional contents of the stimuli being compared, indicating that the effect of age did not confound our findings on mindfulness and the two factors might operate on early affective processing from distinct sources and mechanisms.
doi:10.1155/2015/212368
PMCID: PMC4466385  PMID: 26124852
5.  The Role of Cingulate Cortex in Vicarious Pain 
BioMed Research International  2015;2015:719615.
Vicarious pain is defined as the observation of individuals in pain. There is growing neuroimaging evidence suggesting that the cingulate cortex plays a significant role in self-experienced pain processing. Yet, very few studies have directly tested the distinct functions of the cingulate cortex for vicarious pain. In this review, one EEG and eighteen neuroimaging studies reporting cingulate cortex activity during pain observation were discussed. The data indicate that there is overlapping neural activity in the cingulate cortex during self- and vicarious pain. Such activity may contribute to shared neural pain representations that permit inference of the affective state of individuals in pain, facilitating empathy. However, the exact location of neuronal populations in which activity overlaps or differs for self- and observed pain processing requires further confirmation. This review also discusses evidence suggesting differential functions of the cingulate cortex in cognitive, affective, and motor processing during empathy induction. While affective processing in the cingulate cortex during pain observation has been explored relatively more often, its attention and motor roles remain underresearched. Shedding light on the neural correlates of vicarious pain and corresponding empathy in healthy populations can provide neurobiological markers and intervention targets for empathic deficits found in various clinical disorders.
doi:10.1155/2015/719615
PMCID: PMC4357030  PMID: 25815331
6.  Potential Therapeutic Effects of Meditation for Treating Affective Dysregulation 
Affective dysregulation is at the root of many psychopathologies, including stress induced disorders, anxiety disorders, and depression. The root of these disorders appears to be an attenuated, top-down cognitive control from the prefrontal cortices over the maladaptive subcortical emotional processing. A form of mental training, long-term meditation practice can trigger meditation-specific neuroplastic changes in the brain regions underlying cognitive control and affective regulation, suggesting that meditation can act as a kind of mental exercise to foster affective regulation and possibly a cost-effective intervention in mood disorders. Increasing research has suggested that the cultivation of awareness and acceptance along with a nonjudgmental attitude via meditation promotes adaptive affective regulation. This review examined the concepts of affective regulation and meditation and discussed behavioral and neural evidence of the potential clinical application of meditation. Lately, there has been a growing trend toward incorporating the “mindfulness” component into existing psychotherapeutic treatment. Promising results have been observed thus far. Future studies may consider exploring the possibility of integrating the element of “compassion” into current psychotherapeutic approaches.
doi:10.1155/2014/402718
PMCID: PMC4145796  PMID: 25197309
7.  Unfolding the Spatial and Temporal Neural Processing of Lying about Face Familiarity 
Cerebral Cortex (New York, NY)  2013;25(4):927-936.
To understand the neural processing underpinnings of deception, this study employed both neuroimaging (functional magnetic resonance imaging, fMRI) and neurophysiological (event-related potential, ERP) methodologies to examine the temporal and spatial coupling of the neural correlates and processes that occur when one lies about face familiarity. This was performed using simple directed lying tasks. According to cues provided by the researchers, the 17 participants were required to respond truthfully or with lies to a series of faces. The findings confirmed that lie and truth conditions are associated with different fMRI activations in the ventrolateral, dorsolateral, and dorsal medial-frontal cortices; premotor cortex, and inferior parietal gyrus. They are also associated with different amplitudes within the time interval between 300 and 1000 ms post face stimulus, after the initiation (270 ms) of face familiarity processing. These results support the cognitive model that suggests representations of truthful information are first aroused and then manipulated during deception. Stronger fMRI activations at the left inferior frontal gyrus and more positive-going ERP amplitudes within [1765, 1800] ms were observed in the contrast between lie and truth for familiar than for unfamiliar faces. The fMRI and ERP findings, together with ERP source reconstruction, clearly delineate the neural processing of face familiarity deception.
doi:10.1093/cercor/bht284
PMCID: PMC4379998  PMID: 24186897
deception; ERP; face familiarity; fMRI; source reconstruction
8.  Increased gray matter volume in the right angular and posterior parahippocampal gyri in loving-kindness meditators 
Previous voxel-based morphometry (VBM) studies have revealed that meditation is associated with structural brain changes in regions underlying cognitive processes that are required for attention or mindfulness during meditation. This VBM study examined brain changes related to the practice of an emotion-oriented meditation: loving-kindness meditation (LKM). A 3 T magnetic resonance imaging (MRI) scanner captured images of the brain structures of 25 men, 10 of whom had practiced LKM in the Theravada tradition for at least 5 years. Compared with novices, more gray matter volume was detected in the right angular and posterior parahippocampal gyri in LKM experts. The right angular gyrus has not been previously reported to have structural differences associated with meditation, and its specific role in mind and cognitive empathy theory suggests the uniqueness of this finding for LKM practice. These regions are important for affective regulation associated with empathic response, anxiety and mood. At the same time, gray matter volume in the left temporal lobe in the LKM experts appeared to be greater, an observation that has also been reported in previous MRI meditation studies on meditation styles other than LKM. Overall, the findings of our study suggest that experience in LKM may influence brain structures associated with affective regulation.
doi:10.1093/scan/nss076
PMCID: PMC3541494  PMID: 22814662
temporo-parietal junction; voxel-based morphometry; metta meditation; empathy; affective regulation
9.  Impaired social decision making in patients with major depressive disorder 
Brain and Behavior  2012;2(4):415-423.
Research on how depression influences social decision making has been scarce. This study investigated how people with depression make decisions in an interpersonal trust-reciprocity game. Fifty female patients diagnosed with major depressive disorders (MDDs) and 49 healthy women participated in this study. The experiment was conducted on a one-to-one basis. Participants were asked to play the role of a trustee responsible for investing money given to them by an anonymous female investor playing on another computer station. In each trial, the investor would send to a participant (the trustee) a request for a certain percentage of the appreciated investment (repayment proportion). Since only the participant knew the exact amount of the appreciated investment, she could decide to pay more (altruistic act), the same, or less (deceptive act) than the requested amount. The participant's money acquired in the trial would be confiscated if her deceptive act was caught. The frequency of deceptive or altruistic decisions and relative monetary gain in each decision choice were examined. People with depression made fewer deceptive and fewer altruistic responses than healthy controls in all conditions. Moreover, the specific behavioral pattern presented by people with depression was modulated by the task factors, including the risk of deception detection and others’ intentions (benevolence vs. malevolence). Findings of this study contribute to furthering our understanding of the specific pattern of social behavioral changes associated with depression.
doi:10.1002/brb3.62
PMCID: PMC3432964  PMID: 22950045
Affective disorders; altruism; deception; depression; risky decision making; trust
10.  Sex-Related Differences in Neural Activity during Risk Taking: An fMRI Study 
Cerebral Cortex (New York, NY)  2008;19(6):1303-1312.
This study explored sex effects on the process of risk-taking. We observed that the female participants (n = 10) showed stronger activation in the right insula and bilateral orbitofrontal cortex (OFC) than did the male participants (n = 12) while they were performing in the Risky-Gains task. The female participants also showed stronger activations in the precentral, postcentral, and paracentral regions after receiving punishment feedback. In addition, the strength of neural activity in the insula correlated with the rate of risky behaviors for the female participants but not for the male participants. Similarly, the percent signal changes in the right OFC correlated negatively with the rate of selecting risky choices for the female group. These findings strongly suggest a sex-related influence modulating brain activity during risk-taking tasks. When taking the same level of risk, relative to men, women tend to engage in more neural processing involving the insula and the OFC to update and valuate possible uncertainty associated with risk-taking decision making. These results are consistent with the value-based decision-making model and offer insights into the possible neural mechanisms underlying the different risk-taking attitudes of men and women.
doi:10.1093/cercor/bhn172
PMCID: PMC2677650  PMID: 18842666
insula; neuroimaging; orbitofrontal cortex; risk taking; sex differences
11.  Age-related differences in neural activities during risk taking as revealed by functional MRI 
Previous research has clearly documented that risky decision making is different in young and older adults. Yet, there has been a relative dearth of research that seeks to understand such age-related changes in the neural activities associated with risk taking. To address this research issue, 21 men (12 young men, mean age 29.9 ± 6.2 years and 9 older men, mean age 65.2 ± 4.2 years) performed a risky-gains task while their brain activities were monitored by an fMRI scanner. The older adults, relative to their younger peers, presented with contralateral prefrontal activity, particularly at the orbitofrontal cortex. Furthermore, stronger activation of the right insula was observed for the older-aged participants compared to the younger-aged adults. The findings of this study are consistent with the a priori speculations established in accordance with the HAROLD model as well as previous findings. Findings of this study suggest that when making risky decisions, there may be possible neuropsychological mechanisms underlying the change in impulsive and risk-taking behaviors during the course of natural ageing.
doi:10.1093/scan/nsm033
PMCID: PMC2569821  PMID: 19015090
risk taking; ageing; insula; orbitofrontal cortex; prefrontal cortex; neuroimaging
12.  Can the neural–cortisol association be moderated by experience-induced changes in awareness? 
Scientific Reports  2015;5:16620.
Cortisol homeostasis is important for cognitive and affective functions that depend on cortisol-sensitive brain regions including the hippocampus and prefrontal cortex. Recent studies have shown that training induces changes in the brain. We report the findings of a longitudinal study that verified the moderation effect of experience-induced changes in awareness on the neural–cortisol association in cortisol-sensitive brain regions. These findings provide the first piece of evidence that planned behavioral experience can moderate the neural–cortisol association. A range of changes in awareness was achieved in a sample of 21 Chinese participants, divided into two groups: Awareness-based compassion meditation (ABCM) (n = 10) and relaxation (n = 11). We observed that changes in awareness were significant moderators of hippocampal–cortisol changes. Furthermore, a significant negative association between changes in plasma cortisol level and the resting-state synchrony of the right hippocampal and insular-frontal-operculum regions was observed. These novel findings shed light on the inter-relationships between changes in hippocampal–cortisol levels and changes in awareness and preliminarily identify the neural underpinnings of interventions for cortisol-related abnormal functioning for further study.
doi:10.1038/srep16620
PMCID: PMC4649618  PMID: 26577539
13.  A Pontine Region is a Neural Correlate of the Human Affective Processing Network 
EBioMedicine  2015;2(11):1799-1805.
doi:10.1016/j.ebiom.2015.10.020
PMCID: PMC4740328  PMID: 26870804
Pons; Raphe Nuclei; Emotion; fMRI; Small-World Connectivity
14.  A Multi-Dimensional and Integrative Approach to Examining the High-Risk and Ultra-High-Risk Stages of Bipolar Disorder 
EBioMedicine  2015;2(8):919-928.
Background
Validating the high-risk (HR) and ultra-high-risk (UHR) stages of bipolar disorder (BP) may help enable early intervention strategies.
Methods
We followed up with 44 offspring of parents with BP, subdividing into the HR and UHR categories. The offspring were aged 8–28 years and were free of any current DSM-IV diagnoses. Our multilevel, integrative approach encompassed gray matter (GM) volumes, brain network connectivity, neuropsychological performance, and clinical outcomes.
Findings
Compared with the healthy controls (HCs) (n = 33), the HR offspring (n = 26) showed GM volume reductions in the right orbitofrontal cortex. Compared with the HR offspring, the UHR offspring (n = 18) exhibited increased GM volumes in four regions. Both the HR and UHR offspring displayed abnormalities in the inferior occipital cortex regarding the measures of degree and centrality, reflecting the connections and roles of the region, respectively. In the UHR versus the HR offspring, the UHR offspring exhibited upwards-shifted small world topologies that reflect high clustering and efficiency in the brain networks. Compared with the HCs, the UHR offspring had significantly lower assortativity, which was suggestive of vulnerability. Finally, processing speed, visual–spatial, and general function were impaired in the UHR offspring but not in the HR offspring.
Interpretation
The abnormalities observed in the HR offspring appear to be inherited, whereas those associated with the UHR offspring represent stage-specific changes predisposing them to developing the disorder.
Highlights
•Pathophysiological alterations were identified in the high-risk and ultra-high-risk stages of bipolar disorder (BP).•Deficits in processing speed and visual-spatial memory were observed in the ultra-high-risk stage of BP.•Abnormalities associated with the ultra-high-risk stage are suggestive of risk for the full development of BP.•Our data support that the underlying abnormalities of BP may become apparent long before the official onset.•Identifying the early development of BP opens the avenue for early intervention.
doi:10.1016/j.ebiom.2015.06.027
PMCID: PMC4563124  PMID: 26425699
Bipolar disorder; Affective disorder; Network analysis; High-risk design; Neuroimaging; Cognition; Ultra-high-risk
15.  The Relevance of Short-Range Fibers to Cognitive Efficiency and Brain Activation in Aging and Dementia 
PLoS ONE  2014;9(4):e90307.
The integrity of structural connectivity in a functional brain network supports the efficiency of neural processing within relevant brain regions. This study aimed to quantitatively investigate the short- and long-range fibers, and their differential roles in the lower cognitive efficiency in aging and dementia. Three groups of healthy young, healthy older adults and patients with Alzheimer's disease (AD) participated in this combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study on prospective memory (PM). Short- and long-range fiber tracts within the PM task engaged brain networks were generated. The correlation between the fMRI signal change, PM performance and the DTI characters were calculated. FMRI results showed that the PM-specific frontal activations in three groups were distributed hierarchically along the rostrocaudal axis in the frontal lobe. In an overall PM condition generally activated brain network among the three groups, tractography was used to generate the short-range fibers, and they were found impaired in both healthy older adults and AD patients. However, the long-range fiber tracts were only impaired in AD. Additionally, the mean diffusivity (MD) of short-range but not long-range fibers was positively correlated with fMRI signal change and negatively correlated with the efficiency of PM performance. This study suggests that the disintegrity of short-range fibers may contribute more to the lower cognitive efficiency and higher compensatory brain activation in healthy older adults and more in AD patients.
doi:10.1371/journal.pone.0090307
PMCID: PMC3973665  PMID: 24694731
16.  How Does Experience Modulate Auditory Spatial Processing in Individuals with Blindness? 
Brain Topography  2013;28(3):506-519.
Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel “Bat-ears” sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.
doi:10.1007/s10548-013-0339-1
PMCID: PMC4408360  PMID: 24322827
Cross-modal plasticity; Sound localization; Superior frontal gyrus; Middle occipital gyrus
17.  I want to lie about not knowing you, but my precuneus refuses to cooperate 
Scientific Reports  2013;3:1636.
Previously identified neural correlates of deception, such as the prefrontal, anterior cingulate, and parietal regions, have proven to be unreliable neural markers of deception, most likely because activity in these regions reflects executive processes that are not specific to deception. Herein, we report the first fMRI study that provides strong preliminary evidence that the neural activity associated with perception but not executive processes could offer a better marker of deception with regard to face familiarity. Using a face-recognition task, activity in the left precuneus during the perception of familiar faces accurately marked 11 of 13 subjects who lied about not knowing faces that were in fact familiar to them. This level of classification accuracy is much higher than the level predicted by chance and agrees with other findings by experts in lie detection.
doi:10.1038/srep01636
PMCID: PMC3622132  PMID: 23572081
18.  Distinct Neural Activity Associated with Focused-Attention Meditation and Loving-Kindness Meditation 
PLoS ONE  2012;7(8):e40054.
This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing.
doi:10.1371/journal.pone.0040054
PMCID: PMC3419705  PMID: 22905090
19.  Adiponectin protects rat hippocampal neurons against excitotoxicity 
Age  2010;33(2):155-165.
Adiponectin exerts multiple regulatory functions in the body and in the hypothalamus primarily through activation of its two receptors, adiponectin receptor1 and adiponectin receptor 2. Recent studies have shown that adiponectin receptors are widely expressed in other areas of the brain including the hippocampus. However, the functions of adiponectin in brain regions other than the hypothalamus are not clear. Here, we report that adiponectin can protect cultured hippocampal neurons against kainic acid-induced (KA) cytotoxicity. Adiponectin reduced the level of reactive oxygen species, attenuated apoptotic cell death, and also suppressed activation of caspase-3 induced by KA. Pretreatment of hippocampal primary neurons with an AMPK inhibitor, compound C, abolished adiponectin-induced neuronal protection. The AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, attenuated KA-induced caspase-3 activity. These findings suggest that the AMPK pathway is critically involved in adiponectin-induced neuroprotection and may mediate the antioxidative and anti-apoptotic properties of adiponectin.
doi:10.1007/s11357-010-9173-5
PMCID: PMC3127462  PMID: 20842535
Adiponectin; Neuroprotection; Hippocampus; Kainic acid; AMPK
20.  Identification and Classification of Facial Familiarity in Directed Lying: An ERP Study 
PLoS ONE  2012;7(2):e31250.
Recognizing familiar faces is essential to social functioning, but little is known about how people identify human faces and classify them in terms of familiarity. Face identification involves discriminating familiar faces from unfamiliar faces, whereas face classification involves making an intentional decision to classify faces as “familiar” or “unfamiliar.” This study used a directed-lying task to explore the differentiation between identification and classification processes involved in the recognition of familiar faces. To explore this issue, the participants in this study were shown familiar and unfamiliar faces. They responded to these faces (i.e., as familiar or unfamiliar) in accordance with the instructions they were given (i.e., to lie or to tell the truth) while their EEG activity was recorded. Familiar faces (regardless of lying vs. truth) elicited significantly less negative-going N400f in the middle and right parietal and temporal regions than unfamiliar faces. Regardless of their actual familiarity, the faces that the participants classified as “familiar” elicited more negative-going N400f in the central and right temporal regions than those classified as “unfamiliar.” The P600 was related primarily with the facial identification process. Familiar faces (regardless of lying vs. truth) elicited more positive-going P600f in the middle parietal and middle occipital regions. The results suggest that N400f and P600f play different roles in the processes involved in facial recognition. The N400f appears to be associated with both the identification (judgment of familiarity) and classification of faces, while it is likely that the P600f is only associated with the identification process (recollection of facial information). Future studies should use different experimental paradigms to validate the generalizability of the results of this study.
doi:10.1371/journal.pone.0031250
PMCID: PMC3283635  PMID: 22363597
21.  Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats 
PLoS ONE  2011;6(9):e24263.
Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress.
doi:10.1371/journal.pone.0024263
PMCID: PMC3174166  PMID: 21935393
22.  Lying about the Valence of Affective Pictures: An fMRI Study 
PLoS ONE  2010;5(8):e12291.
The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.
doi:10.1371/journal.pone.0012291
PMCID: PMC2928271  PMID: 20811624

Results 1-22 (22)