Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Correlation of Wnt5a expression with histopathological grade/stage in urothelial carcinoma of the bladder 
Diagnostic Pathology  2013;8:139.
Bladder cancer, including urothelial carcinoma (UC), is the most common malignancy of the urinary tract and the fourth most frequent cancer overall in men. Wnt5a, a member of the Wnt family of proteins, has been shown to have contradictory roles in the pathogenesis of many cancers, acting either as tumor suppressor or tumor promoter. The objective of this study was to investigate the expression and role of Wnt5a in the pathogenesis of UC and suggest possible clinical applications for diagnosis, prognosis and treatment.
We characterized the expression of Wnt5a in 33 human UC samples using immunohistochemistry. The samples were obtained via transurethral resection, immediately fixed in formalin and then embedded in paraffin. The correlation between Wnt5a immunoreactivity, histological grade, and pathological stage of the tumor was analyzed. The expression of Wnt5a mRNA as well as the effect of Wnt5a on cell migration was also evaluated in two UC cell lines, T24 and J82, and a normal urothelial cell line.
Our immunohistochemical results revealed that Wnt5a staining intensity correlated positively with the histological grade and pathological stage of the UC. Wnt5a mRNA expression differed widely in the three urothelial cell lines, with high levels in one carcinoma cell line and low levels in the other cell line in comparison to the normal urothelial cell line. Migration increased in both UC cell lines in response to Wnt5a treatment.
Our results show that the Wnt5a pathway may play a role in the pathogenesis of UC and suggest that Wnt5a may serve as an additional, complementary diagnostic/prognostic marker for UC.
Virtual slide
PMCID: PMC3846281  PMID: 23947922
Bladder cancer; Wnt5a; Urothelial carcinoma; Cell migration
2.  Aging-related characteristics of growth hormone receptor/binding protein gene-disrupted mice 
Age  2006;28(2):191-200.
Since generation of the growth hormone receptor/binding protein (GHR/BP) gene-disrupted mouse nearly 10 years ago, use of this mouse model has become widespread in the elucidation of the physiological roles of GH and insulin-like growth factor-1 (IGF-1). In particular, it serves as a useful model to study mechanisms of aging. This review highlights the evidence demonstrating that the loss of GH signaling leads to lifespan extension in mice, and presents the multiple characteristics of this mouse line that suggest the life extension is due to alteration of the aging process.
PMCID: PMC2464722  PMID: 19943140
aging; gene disruption; growth hormone receptor/binding protein; longevity; mice
3.  Growth hormone and aging 
The potential usefulness of growth hormone (GH) as an anti-aging therapy is of considerable current interest. Secretion of GH normally declines during aging and administration of GH can reverse age-related changes in body composition. However, mutant dwarf mice with congenital GH deficiency and GH resistant GH-R-KO mice live much longer than their normal siblings, while a pathological elevation of GH levels reduces life expectancy in both mice and men. We propose that the actions of GH on growth, development, and adult body size may serve as important determinants of aging and life span, while the age-related decline in GH levels contributes to some of the symptoms of aging.
PMCID: PMC3455269  PMID: 23604867
4.  Bone homeostasis in growth hormone receptor–null mice is restored by IGF-I but independent of Stat5 
Journal of Clinical Investigation  2000;106(9):1095-1103.
Growth hormone (GH) regulates both bone growth and remodeling, but it is unclear whether these actions are mediated directly by the GH receptor (GHR) and/or IGF-I signaling. The actions of GH are transduced by the Jak/Stat signaling pathway via Stat5, which is thought to regulate IGF-I expression. To determine the respective roles of GHR and IGF-I in bone growth and remodeling, we examined bones of wild-type, GHR knockout (GHR–/–), Stat5ab–/–, and GHR–/– mice treated with IGF-I. Reduced bone growth in GHR–/– mice, due to a premature reduction in chondrocyte proliferation and cortical bone growth, was detected after 2 weeks of age. Additionally, although trabecular bone volume was unchanged, bone turnover was significantly reduced in GHR–/– mice, indicating GH involvement in the high bone-turnover level during growth. IGF-I treatment almost completely rescued all effects of the GHR–/– on both bone growth and remodeling, supporting a direct effect of IGF-I on both osteoblasts and chondrocytes. Whereas bone length was reduced in Stat5ab–/– mice, there was no reduction in trabecular bone remodeling or growth-plate width as observed in GHR–/– mice, indicating that the effects of GH in bone may not involve Stat5 activation.
PMCID: PMC301420  PMID: 11067862

Results 1-4 (4)