Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
Behavior genetics  2013;43(2):151-160.
Conspecifics of many animal species physically compete to gain reproductive resources and thus fitness. Despite the importance of competitive ability across the animal kingdom, specific traits that influence or underpin competitive ability are poorly characterized. Here, we investigate whether there are genetic influences on competitive ability within male house mice. Additionally, we examined if litter demographics (litter size and litter sex ratio) influence competitive ability. We phenotyped two generations for a male s ability to possess a reproductive resource--a prime nesting site--using semi-natural enclosures with mixed sex groupings. We used the animal model coupled with an extensive pedigree to estimate several genetic parameters. Competitive ability was found to be highly heritable, but only displayed a moderate genetic correlation to body mass. Interestingly, litter sex ratio had a weak negative influence on competitive ability. Litter size had no significant influence on competitive ability. Our study also highlights how much remians unknown about the proximal causes of competitive ability.
PMCID: PMC3626107  PMID: 23291957
Heritability; Genetic Correlation; Life-History Evolution; Male-Male Competition; Sexual Selection
2.  “Alas poor Yorick”: What retrospective analysis of canine skulls can tell us about the impact of environmental factors on health 
Necropsies and extensive histological evaluation for clinical and sub-clinical disease of approximately three hundred Portuguese Water dogs are available as part of an ongoing study to assess their state of health at end of life. Throughout life these dogs enjoyed a variety of lifestyles and environments. Here we carry out retrospective quantitative assessments of life-time dietary input and physical activity for each dog. To do this, collagens from skull vault bone and from dentine have been analyzed for ratios of stable isotopes to determine differences in diet that individual dogs experienced during late or early life respectively. Robustness of skull bone (weight/unit of skull size) was used as a relative indicator of the amount of physical activity experienced during a dog’s lifetime. These environmental parameters were correlated with the frequency and severity of specific disease processes determined at necropsy. Both measures were shown to exert significant low-level (r < 25%) differential effects on specific diseases. The value of retrospective analysis of environmental influences is discussed.
PMCID: PMC3891401  PMID: 24436781
Portuguese Water Dog; Necropsy; Histopathology; Exercise; Nutrition; Stable Isotope; Skull; Dentine; Collagen
3.  Age relationships of postmortem observations in Portuguese Water Dogs 
Age  2010;33(3):461-473.
A dog model has been used to evaluate histological changes arising from senescence. Autopsies of 145 Portuguese Water Dogs have been used to evaluate the individual and group “state of health” at time of death. For each dog, weights or dimensions of organs or tissues were obtained, together with histological evaluation of tissues. Twenty-three morphological metrics correlated significantly to age at death. Many of these involved muscles; others were associated with derivatives of embryonic foregut. The latter included lengths of the small intestine and trachea as well as weights of the stomach and some lung lobes. Nearly all of the dogs examined had histological changes in multiple tissues, ranging from two to 12 per dog. Associations among pathologies included inflammatory bowel disease with osteoporosis and dental calculus/periodontitis with atherosclerosis and amyloidosis. In addition, two clusters of histological changes were correlated to aging: hyperplasia, frequency of adenomas, and hemosiderosis constituted one group; inflammation, plasmacytic and lymphocytic infiltration, fibrosis, and atrophy, another. Heritability analysis indicated that many of the changes in tissue/organ morphology or histology could be heritable and possibly associated with IGF1, but more autopsies will be required to substantiate these genetic relationships.
Electronic supplementary material
The online version of this article (doi:10.1007/s11357-010-9181-5) contains supplementary material, which is available to authorized users.
PMCID: PMC3168605  PMID: 20845083
Age of death; Autopsy; Dog; Pathology; Histology
4.  A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs 
Science (New York, N.Y.)  2007;316(5821):112-115.
The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs.
PMCID: PMC2789551  PMID: 17412960
5.  Genetic architecture of the dog: sexual size dimorphism and functional morphology 
Trends in genetics : TIG  2006;22(10):537-544.
Purebred dogs are a valuable resource for genetic analysis of quantitative traits. Quantitative traits are complex, controlled by many genes that are contained within regions of the genome known as quantitative trait loci (QTL). The genetic architecture of quantitative traits is defined by the characteristics of these genes: their number, the magnitude of their effects, their positions in the genome and their interactions with each other. QTL analysis is a valuable tool for exploring genetic architecture, and highlighting regions of the genome that contribute to the variation of a trait within a population.
PMCID: PMC2785546  PMID: 16934357
6.  Bilaterally Asymmetric Effects of Quantitative Trait Loci (QTLs): QTLs That Affect Laxity in the Right Versus Left Coxofemoral (Hip) Joints of the Dog (Canis familiaris) 
In dogs hip joint laxity that can lead to degenerative joint disease (DJD) is frequent and heritable, providing a genetic model for some aspects of the human disease. We have used Portuguese water dogs (PWDs) to identify Quantitative trait loci (QTLs) that regulate laxity in the hip joint.A population of 286 PWDs, each characterized by ca. 500 molecular genetic markers, was analyzed for subluxation of the hip joint as measured by the Norberg angle, a quantitative radiographic measure of laxity. A significant directed asymmetry was observed, such that greater laxity was observed in the left than the right hip. This asymmetry was not heritable. However, the average Norberg angle was highly heritable as were the Norberg angles of either the right or left hips. After correction for pedigree effects, two QTLs were identified using the metrics of the left and right hips as separate data sets. Both are on canine chromosome 1 (CFA1), separated by about 95 Mb. One QTL, associated with the SSR marker FH2524 was significant for the left, but not the right hip. The other, associated with FH2598, was significant for the right but not the left hip. For both QTLs, some extreme phenotypes were best explained by specific interactions between haplotypes.
PMCID: PMC2778498  PMID: 14708095
quantitative trait loci (QTLs); dog; hip laxity; bilateral asymmetry; Norberg angle; Canine genetics; hip dysplasia
8.  Genetic regulation of canine skeletal traits: trade-offs between the hind limbs and forelimbs in the fox and dog 
Genetic variation in functionally integrated skeletal traits can be maintained over 10 million years despite bottlenecks and stringent selection. Here, we describe an analysis of the genetic architecture of the canid axial skeleton using populations of the Portuguese Water Dog Canis familiaris) and silver fox (Vulpes vulpes). Twenty-one skeletal metrics taken from radiographs of the forelimbs and hind limbs of the fox and dog were used to construct separate anatomical principal component (PC) matrices of the two species. In both species, 15 of the 21 PCs exhibited significant heritability, ranging from 25% to 70%. The second PC, in both species, represents a trade-off in which limb-bone width is inversely correlated with limb-bone length. PC2 accounts for approximately 15% of the observed skeletal variation, ~30% of the variation in shape. Many of the other significant PCs affect very small amounts of variation (e.g., 0.2–2%) along trade-off axes that partition function between the forelimbs and hind limbs. These PCs represent shape axes in which an increase in size of an element of the forelimb is associated with a decrease in size of an element of the hind limb and vice versa. In most cases, these trade-offs are heritable in both species and genetic loci have been identified in the Portuguese Water Dog for many of these. These PCs, present in both the dog and the fox, include ones that affect lengths of the forelimb versus the hind limb, length of the forefoot versus that of the hind foot, muscle moment (i.e., lever) arms of the forelimb versus hind limb, and cortical thickness of the bones of the forelimb versus hind limb. These inverse relationships suggest that genetic regulation of the axial skeleton results, in part, from the action of genes that influence suites of functionally integrated traits. Their presence in both dogs and foxes suggests that the genes controlling the regulation of these PCs of the forelimb versus hind limb may be found in other tetrapod taxa.
PMCID: PMC2367254  PMID: 18458753

Results 1-8 (8)