Search tips
Search criteria

Results 1-25 (183)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Effects of siRNA-mediated knockdown of jumonji domain containing 2A on proliferation, migration and invasion of the human breast cancer cell line MCF-7 
Jumonji domain containing 2A (JMJD2A) is a potential cancer-associated gene that may be involved in human breast cancer. The present study aimed to investigate suppressive effects on the MCF-7 human breast cancer cell line by transfection with JMJD2A-specific siRNA. Quantitative real-time PCR and western blot analysis were used to detect the expression levels of JMJD2A. Flow cytometric (FCM) analysis and WST-8 assay were used to evaluate cell proliferation. Boyden chambers were used in cell migration and invasion assays to evaluate the cell exercise capacity. Expression levels of JMJD2A mRNA and protein in the siRNA group were both downregulated successfully by transfection. FCM results showed that the percentage of cells in the G0/G1 phase in the siRNA group was significantly greater than that in the blank (P<0.05) and negative control groups (P<0.05). Additionally, the mean absorbance in the siRNA group was significantly lower (P<0.05), as observed by WST-8 assay. Moreover, a decreased number of migrated cells in the siRNA group was observed (P<0.05) using a cell migration and invasion assay. These data indicated that knockdown of JMJD2A may cause inhibition of proliferation, migration and invasion of MCF-7 cells. This study provides a new perspective in understanding the molecular mechanisms underlying the progression of breast cancer and offers a potential therapeutic target for breast cancer.
PMCID: PMC3501409  PMID: 23170139
jumonji domain containing 2A; transfection; invasion; proliferation; migration
2.  Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro 
Previous data demonstrate that JMJD2A is a cancer-associated gene and may be involved in human breast cancer by demethylation of H3K9me3. The aim of this study was to investigate depressive effects on JMJD2A by transfection with JMJD2A-sepcific siRNA in human breast cancer cell line MDA-MB-231 and effects on cell proliferation, invasion and migration. JMJD2A-specific siRNA was chemically synthesised and transfected into human breast cancer cell line MDA-MB-231. Expression levels of JMJD2A were detected by quantitative real-time PCR and Western blot analysis. Cells proliferation was evaluated by using flow cytometric anlysis and MTT assay. The abilities of invasion and migration were evaluated by cell migration and invasion assay with Boyden chambers. The results showed that the transfection was successful and expression levels of JMJD2A mRNA and protein in siRNA group were both down-regulated. By MTT assay, the mean actual absorbance in siRNA group was significantly lower than that in blank control group (P < 0.05) and negative control group (P < 0.05). In addition, the percentage of cells in G0/G1 phase in siRNA group was significantly more than that in blank control group (P < 0.05) and negative control group (P < 0.05). Furthermore, by cell invasion and migration assay, the decreased number of migrated cells in siRNA group was observed (P < 0.05). These data imply that silencing JMJD2A gene could result in cell cycle change and proliferation inhibition, and lead to suppress tumor cell invasion and migration. It provides a new perspective in understanding the pleiotropic functions of JMJD2A and its contribution to human breast cancer.
PMCID: PMC3215938  PMID: 21962223
JMJD2A; transfection; proliferation; invasion; migration
3.  Snail modulates the assembly of fibronectin via α5 integrin for myocardial migration in zebrafish embryos 
Scientific Reports  2014;4:4470.
The Snail family member snail encodes a zinc finger-containing transcriptional factor that is involved in heart formation. Yet, little is known about how Snail regulates heart development. Here, we identified that one of the duplicated snail genes, snai1b, was expressed in the heart region of zebrafish embryos. Depletion of Snai1b function dramatically reduced expression of α5 integrin, disrupted Fibronectin layer in the heart region, especially at the midline, and prevented migration of cardiac precursors, resulting in defects in cardiac morphology and function in zebrafish embryos. Injection of α5β1 protein rescued the Fibronectin layer and then the myocardial precursor migration in snai1b knockdown embryos. The results provide the molecular mechanism how Snail controls the morphogenesis of heart during embryonic development.
PMCID: PMC3966048  PMID: 24667151
4.  Genetic polymorphism of NFKB1 and NFKBIA genes and liver cancer risk: a nested case–control study in Shanghai, China 
BMJ Open  2014;4(2):e004427.
Genetic variations of nuclear factor-κB (NF-κB) signalling pathway were found to be associated with inflammatory diseases and several malignancies. However, little is known about NF-κB pathway gene polymorphisms and susceptibility of liver cancer. The aim of this study was to investigate whether genetic variants of NFKB1 and NFKBIA were associated with risk of liver cancer in a Chinese population.
The study was designed as a nested case–control study within two prospective cohorts (the Shanghai Women's Health Study, SWHS, 1996–2000 and the Shanghai Men's Health Study, SMHS, 2002–2006).
This population-based study was conducted in urban Shanghai, China.
A total of 217 incident liver cancer cases diagnosed through 31 December 2009 and 427 healthy controls matched by sex, age at baseline (±2 years) and date (±30 days) of sample collection were included in the study.
Primary and secondary outcome measures
Genetic polymorphisms of NFKB1 and NFKBIA were determined blindly by TaqMan single-nucleotide polymorphism (SNP) genotyping assay. OR and its 95% CIs were estimated by an unconditional logistic regression model to measure the association between selected SNPs and the risk of liver cancer.
After adjusted for potential confounding factors, rs28362491 ins/del or del/del genotypes were associated with higher risk of liver cancer with an adjusted OR 1.54 (95% CI 1.04 to 2.28). rs230496 AG and GG genotypes were also noted with higher risk of liver cancer with an adjusted OR 1.53 (95% CI 1.03 to 2.26). Haplotype analysis indicated that carriers of the NFKB1 GA and AA (rs230525-rs230530) haplotypes had higher risk of liver cancer under an additive model. No association was observed between NFKBIA variants and risk of live cancer.
Our results suggest that genetic variants of NFKB1 influence liver cancer susceptibility in Chinese population, although replication in other studies is needed.
PMCID: PMC3939648  PMID: 24578542
5.  Identification and Characterization of High-Molecular-Weight Glutenin Subunits from Agropyron intermedium 
PLoS ONE  2014;9(2):e87477.
High-molecular-weight glutenin subunit (HMW-GS) is a primary determinant of processing quality of wheat. Considerable progress has been made in understanding the structure, function and genetic regulation of HMW-GS in wheat and some of its related species, but less is known about their orthologs in Agropyron intermedium, a useful related species for wheat improvement. Here seven HMW-GSs in Ag. intermedium were identified using SDS-PAGE and Western blotting experiments. Subsequently, the seven genes (Glu-1Aix1∼4 and Glu-1Aiy1∼3) encoding the seven HMW-GSs were isolated using PCR technique with degenerate primers, and confirmed by bacterial expression and Western blotting. Sequence analysis indicated that the seven Ag. intermedium HMW-GSs shared high similarity in primary structure to those of wheat, but four of the seven subunits were unusually small compared to the representatives of HMW-GS from wheat and two of them possessed extra cysteine residues. The alignment and clustering analysis of deduced amino acid sequences revealed that 1Aix1 and 1Aiy1 subunits had special molecular structure, belonging to the hybrid type compounding between typical x- and y-type subunit. The xy-type subunit 1Aix1 is composed of the N-terminal of x-type and C-terminal of y-type, whereas yx-type subunit 1Aiy1 comprises the N-terminal of y-type and C-terminal of x-type. This result strongly supported the hypothesis of unequal crossover mechanism that might generate the novel coding sequence for the hybrid type of HMW-GSs. In addition to the aforementioned, the other novel characteristics of the seven subunits were also discussed. Finally, phylogenetic analysis based on HMW-GS genes was carried out and provided new insights into the evolutionary biology of Ag. intermedium.
PMCID: PMC3913593  PMID: 24503781
6.  Kaiso Interacts with p120-Catenin to Regulate β-Catenin Expression at the Transcriptional Level 
PLoS ONE  2014;9(2):e87537.
We have reported that p120-catenin could regulate β-catenin transcription in lung cancer cells, but the specific mechanism is unclear.
Methods and Results
In this study, bisulfite sequencing PCR showed that the β-catenin promoter region in SPC-A-1 and LTEP-a-2 lung cancer cell lines has Kaiso binding sites sequences and CpG islands which may combine with Kaiso. The demethylating reagent 5-Aza-2′-deoxycytidine significantly upregulated β-catenin mRNA expression in lung cancer cell lines, whereas expression was significantly reduced following transfection with Kaiso. However, the upregulation of β-catenin mRNA expression after treatment with 5-Aza-2′-deoxycytidine was not reduced by subsequent transfection with Kaiso cDNA. Chromatin immunoprecipitation showed that, in lung cancer cell lines, methylated CpG-dinucleotides sequences combined with Kaiso and the Kaiso binding sites sequence did not. The capacity of Kaiso to combine with p120-catenin isoforms was confirmed by immunoprecipitation.
Based on these results, we concluded that Kaiso participates in the regulation by p120ctn of β-catenin mRNA expression in the lung cancer cell lines.
PMCID: PMC3911973  PMID: 24498333
7.  Re-evaluation of ABO gene polymorphisms detected in a genome-wide association study and risk of pancreatic ductal adenocarcinoma in a Chinese population 
Chinese Journal of Cancer  2014;33(2):68-73.
Pancreatic cancer is a fatal malignancy with an increasing incidence in Shanghai, China. A genome-wide association study (GWAS) and other work have shown that ABO alleles are associated with pancreatic cancer risk. We conducted a population-based case-control study involving 256 patients with pathologically confirmed pancreatic ductal adenocarcinoma (PDAC) and 548 healthy controls in Shanghai, China, to assess the relationships between GWAS-identified ABO alleles and risk of PDAC. Carriers of the C allele of rs505922 had an increased cancer risk [adjusted odds ratio (OR) = 1.42, 95% confidence interval (CI): 1.02-1.98] compared to TT carriers. The T alleles of rs495828 and rs657152 were also significantly associated with an elevated cancer risk (adjusted OR = 1.58, 95% CI: 1.17-2.14; adjusted OR = 1.51, 95% CI: 1.09-2.10). The rs630014 variant was not associated with risk. We did not find any significant gene-environment interaction with cancer risk using a multifactor dimensionality reduction (MDR) method. Haplotype analysis also showed that the haplotype CTTC was associated with an increased risk of PDAC (adjusted OR = 1.46, 95% CI: 1.12-1.91) compared with haplotype TGGT. GWAS-identified ABO variants are thus also associated with risk of PDAC in the Chinese population.
PMCID: PMC3884064  PMID: 23816557
Pancreatic ductal adenocarcinoma; ABO gene; genome-wide association study; genetic variation; haplotype
8.  Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors 
Sensors (Basel, Switzerland)  2014;14(2):1902-1917.
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
PMCID: PMC3958263  PMID: 24463430
nondestructive inspection; ultrasonic waves; wave energy flow; signal processing; visualization technique
9.  Simultaneous bone marrow and composite tissue transplantation in rats treated with nonmyeloablative conditioning promotes tolerance1 
Transplantation  2013;95(2):301-308.
Approaches to safely induce tolerance in vascularized composite allotransplantation (VCA) with chimerism through bone marrow transplantation (BMT) are currently being pursued. However, the VCA were historically performed sequentially after donor chimerism was established. Delayed VCA is not clinically applicable due to the time constraints associated with procurement from deceased donors. A more clinically relevant approach to perform both the BMT and VCA simultaneously was evaluated.
WF (RT1Au) rats were treated with a short course of immunosuppressive therapy (anti-αβ-TCR mAb, FK-506, and anti-lymphocyte serum). One day prior to BMT, rats were treated with varying doses of total body irradiation (TBI) followed by transplantation of heterotopic osteomyocutaneous flaps from hind limbs of ACI (RT1Aabl) rats.
80% of rats conditioned with 300 cGy TBI and 40% of rats receiving 400 cGy TBI accepted the VCA. Mixed chimerism was detected in peripheral blood at one month post-VCA, but chimerism was lost in all transplant recipients by 4 months. The majority of peripheral donor cells originated from the BMT and not the VCA. Acceptors of VCA were tolerant of a donor skin graft challenge and no anti-donor antibodies were detectable, suggesting a central deletional mechanism for tolerance. Regulatory T cells (Treg) from spleens of acceptors more potently suppressed lymphocyte proliferation than Treg from rejectors in the presence of donor stimulator cells.
These studies suggest that simultaneous BMT and VCA may establish indefinite allograft survival in rats through Treg-mediated suppression and thymic deletion of alloreactive T cells.
PMCID: PMC3549055  PMID: 23250336
tolerance; vascularized composite allotransplantation; mixed chimerism; non-myeloablative conditioning; T regulatory cell
10.  A Critical Role for the TLR4/TRIF Pathway in Allogeneic Hematopoietic Cell Rejection by Innate Immune Cells 
Cell transplantation  2012;22(12):10.3727/096368912X658881.
We show for the first time that signaling through the TLR4/TRIF pathway plays a critical role in allogeneic bone marrow cell (BMC) rejection. This appears to be unique to BMC as organ allografts are rejected mainly via MyD88 signaling. Using T or T/B cell-deficient mice, we found that BMC allorejection occurred early before T cell activation and was T and B cell-independent, suggesting an effector role for innate immune cells in BMC rejection. We further demonstrated the innate immune signaling in BMC allorejection by showing superior engraftment in mice deficient in TRIF or TLR4 but not MyD88 or TLR3. The restored cytotoxicity in TRIF deficient recipients transferred with wildtype F4/80+ or NK1.1+ cells suggests TRIF signaling dependence on macrophages or NK cells in early BMC rejection. Production of the proinflammatory cytokine IL-6 and TRIF relevant chemokine MCP-1 was significantly increased early after bone marrow transplantation. In vivo specific depletion of macrophages or NK innate immune cells in combination with anti-CD154/rapamycin resulted in additive-enhanced allogeneic engraftment. The requirement for irradiation was completely eliminated when both macrophages and NK cells were depleted in combination with anti-CD154/rapamycin to target T and B cells, supporting the hypothesis that two barriers involving innate and adaptive immunity exist in mediating rejection of allogeneic BMC. In summary, our results clearly demonstrate a previously unappreciated role for innate immunity in BMC allorejection via signaling through a unique MyD88-independent TLR4/TRIF mechanism. These findings may have direct clinical impact on strategies for conditioning recipients for stem cell transplantation.
PMCID: PMC3720759  PMID: 23146386
TLR4; TRIF; bone marrow transplantation; innate immunity
11.  Effect of Mutations at Position E138 in HIV-1 Reverse Transcriptase and Their Interactions with the M184I Mutation on Defining Patterns of Resistance to Nonnucleoside Reverse Transcriptase Inhibitors Rilpivirine and Etravirine 
Impacts of mutations at position E138 (A/G/K/Q/R/V) alone or in combination with M184I in HIV-1 reverse transcriptase (RT) were investigated. We also determined why E138K is the most prevalent nonnucleoside reverse transcriptase inhibitor mutation in patients failing rilpivirine (RPV) therapy. Recombinant RT enzymes and viruses containing each of the above-mentioned mutations were generated, and drug susceptibility was assayed. Each of the E138A/G/K/Q/R mutations, alone or in combination with M184I, resulted in decreased susceptibility to RPV and etravirine (ETR). The maximum decrease in susceptibility to RPV was observed for E138/R/Q/G by both recombinant RT assay and cell-based assays. E138Q/R-containing enzymes and viruses also showed the most marked decrease in susceptibility to ETR by both assays. The addition of M184I to the E138 mutations did not significantly change the levels of diminution in drug susceptibility. These findings indicate that E138R caused the highest level of loss of susceptibility to both RPV and ETR, and, accordingly, E138R should be recognized as an ETR resistance-associated mutation. The E138K/Q/R mutations can compensate for M184I in regard to both enzymatic fitness and viral replication capacity. The favored emergence of E138K over other mutations at position E138, together with M184I, is not due to an advantage in either the level of drug resistance or viral replication capacity but may reflect the fact that E138R and E138Q require two distinct mutations to occur, one of which is a disfavorable G-to-C mutation, whereas E138K requires only a single favorable G-to-A hypermutation. Of course, other factors may also affect the concept of barrier to resistance.
PMCID: PMC3697388  PMID: 23612196
12.  Xiaochaihu Decoction attenuates the vicious circle between the oxidative stress and the ALP inactivation through LPS-catecholamines interactions in gut, liver and brain during CCI4+ethanol-induced mouse HCC 
Xiaochaihu Decoction (XCHD) prevents hepatocarcinogenesis in association with inhibition of oxidative stress. However, alkaline phosphatase (ALP) activity, lipopolysaccharides (LPS)-catecholamines (CA) interactions in gut, liver and brain may play an important role in the status of oxidative stress. This study was to assess whether XCHD attenuates the vicious circle between oxidative stress and ALP inactivation through LPS-CA interactions.
Hepatocellular carcinoma group (HCC) were induced by CCI4 + ethanol; HCC with Liver Depression and Spleen Deficiency (HCC + LDSD) were induced by squeezing tails (30 min/day), solitary breeding and intermittent fasting on the basis of HCC; XCHD was administered after 4 weeks of the HCC + LDSD. The degree of tissue injury were studied using a scoring system, and brain weights were measured. Peroxynitrite (ONOO−), malondialdehyde (MDA), 4-hydroxy-3-methoxymandelic acid (VMA, CA metabolites), lipopolysaccharide-phosphate (LPS-P), ALP activity (ALP-A) and Concanavalin A (ConA)-binding rate of ALP (ALP-C) were determined by colorimetric method and lectin (ConA) affinity precipitation method.
More injuries and ONOO−, MDA, VMA, LPS-P, ALP-C were increased, ALP-A were decreased in the gut, liver and brain of HCC group, the most in HCC + LDSD group, after treatment with XCHD, all of which were improved. A positive association found between gut-liver-brain injury and ONOO−, MDA, VMA, LPS-P, ALP-C, between ONOO−, MDA, VMA, LPS-P and ALP-C in the gut, liver and brain, and a negative association found between gut-liver-brain injury and ALP-A, between ALP-A and ONOO−, MDA, VMA, LPS-P, ALP-C in the gut, liver and brain.
XCHD can attenuates the vicious circle between the oxidative stress, nitrosative stress, N-glycan deficiency and inactivation of ALP through LPS-CA interactions in gut, liver and brain.
PMCID: PMC3884004  PMID: 24373196
Xiaochaihu Decoction (XCHD); Ethanol; CCI4; Hepatocellular carcinoma (HCC); Liver depression and spleen deficiency (LDSD); Oxidative stress; Nitrosative stress; Lipopolysaccharid; Catecholamines; Alkaline phosphatase (ALP)
13.  The Oscillation on Solutions of Some Classes of Linear Differential Equations with Meromorphic Coefficients of Finite [p, q]-Order 
The Scientific World Journal  2013;2013:243873.
This paper considers the oscillation on meromorphic solutions of the second-order linear differential equations with the form f′′ + A(z)f = 0, where A(z) is a meromorphic function with [p, q]-order. We obtain some theorems which are the improvement and generalization of the results given by Bank and Laine, Cao and Li, Kinnunen, and others.
PMCID: PMC3876835  PMID: 24453816
14.  Sensory–sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor 
Purinergic Signalling  2013;9(3):463-479.
P2X receptors participate in cardiovascular regulation and disease. After myocardial ischemic injury, sensory–sympathetic coupling between rat cervical DRG nerves and superior cervical ganglia (SCG) facilitated sympathoexcitatory action via P2X7 receptor. The results showed that after myocardial ischemic injury, the systolic blood pressure, heart rate, serum cardiac enzymes, IL-6, and TNF-α were increased, while the levels of P2X7 mRNA and protein in SCG were also upregulated. However, these alterations diminished after treatment of myocardial ischemic (MI) rats with the P2X7 antagonist oxATP. After siRNA P2X7 in MI rats, the systolic blood pressure, heart rate, serum cardiac enzymes, the expression levels of the satellite glial cell (SGC) or P2X7 were significantly lower than those in MI group. The phosphorylation of ERK 1/2 in SCG participated in the molecular mechanism of the sympathoexcitatory action induced by the myocardial ischemic injury. Retrograde tracing test revealed the sprouting of CGRP or SP sensory nerves (the markers of sensory afferent fibers) from DRG to SCG neurons. The upregulated P2X7 receptor promoted the activation of SGCs in SCG, resulting in the formation of sensory–sympathetic coupling which facilitated the sympathoexcitatory action. P2X7 antagonist oxATP could inhibit the activation of SGCs and interrupt the formation of sensory–sympathetic coupling in SCG after the myocardial ischemic injury. Our findings may benefit the treatment of coronary heart disease and other cardiovascular diseases.
PMCID: PMC3757147  PMID: 23754120
P2X7 receptor; Superior cervical ganglia; Dorsal root ganglia; Myocardial ischemic injury; Sensory–sympathetic coupling
15.  Response of Bean (Vicia faba L.) Plants to Low Sink Demand by Measuring the Gas Exchange Rates and Chlorophyll a Fluorescence Kinetics 
PLoS ONE  2013;8(12):e80770.
The decline of photosynthesis in plants under low sink demand is well known. Previous studies focused on the relationship between stomatal conductance (gs) and net photosynthetic rate (Pn). These studies investigated the effect of changes in Photosystem II (PSII) function on the Pn decline under low sink demand. However, little is known about its effects on different limiting steps of electron transport chain in PSII under this condition.
Methodology/Principal Finding
Two-month-old bean plants were processed by removing pods and flowers (low sink demand). On the 1st day after low sink demand treatment, a decline of Pn was accompanied by a decrease in gs and internal-to-ambient CO2 concentration ratio (Ci/Ca). From the 3rd to 9th day, Pn and gs declined continuously while Ci/Ca ratio remained stable in the treatment. Moreover, these values were lower than that of control. Wk (a parameter reflecting the damage to oxygen evolving complex of the donor side of PSII) values in the treatment were significantly higher than their corresponding control values. However, RCQA (a parameter reflecting the number of active RCs per excited cross-section of PSII) values in the treatment were significantly lower than control from the 5th day. From the 11th to 21st day, Pn and gs of the treatment continued to decline and were lower than control. This was accompanied by a decrease of RCQA, and an increase of Wk. Furthermore, the quantum yield parameters φPo, φEo and ψEo in the treatment were lower than in control; however, Ci/Ca values in the treatment gradually increased and were significantly higher than control on the 21st day.
Stomatal limitation during the early stage, whereas a combination of stomatal and non-stomatal limitation during the middle stage might be responsible for the reduction of Pn under low sink demand. Non-stomatal limitation during the late stages after the removal of the sink of roots and pods may also cause Pn reduction. The non-stomatal limitation was associated with the inhibition of PSII electron transport chain. Our data suggests that the donor side of PSII was the most sensitive to low sink demand followed by the reaction center of PSII. The acceptor side of PSII may be the least sensitive.
PMCID: PMC3851463  PMID: 24324626
16.  Safety and efficacy of radiation and chemoradiation in patients over 70 years old with inoperable esophageal squamous cell carcinoma 
Oncology Letters  2013;7(1):260-266.
The aim of the present study was to perform a retrospective analysis to investigate the outcome and toxicity of radiation (RT) and chemoradiation (CRT) in elderly, inoperable patients >70 years old. Between 2003 and 2012, 1,024 patients with squamous cell carcinoma (SCC) of the esophagus were treated at the Department of Thoracic Cancer, West China Hospital (Chengdu, China). Of these patients, 37 were >70 years old and had not undergone surgery, and were selected for analysis. Of these 37 patients, CRT had been administered to 20 (54%). Actuarial survival rates were determined by the Kaplan-Meier method. The one-year survival rate in the CRT group (n=20) was 85%, while 35% of patients in the RT group (n=17) survived for more than one year. The overall and progression-free survival in the CRT group versus the RT group were 17 months [95% confidence interval (CI), 11.861–22.139] versus eight months (95% CI, 6.674–9.326) (P=0.013) and 14 months (95% CI, 9.617–18.383) versus five months (95% CI, 2.311–7.689) (P=0.01), respectively. Patients irradiated with a dose of >50 Gy exhibited an improved survival rate compared with patients who received a dose of ≤50 Gy (18 vs. 14 months; P=0.049). Furthermore, patients with an Eastern Cooperative Oncology Group (ECOG) score of ≤1 had an improved prognosis compared with those with an ECOG score of 2 (14 vs. seven months; P=0.006). The two regimens were well-tolerated and there were no therapy-associated mortalities. The current retrospective study indicated that patients of >70 years old with inoperable esophageal SCC and a good ECOG score exhibit comparably better safety levels with CRT and improved survival rates compared with RT alone.
PMCID: PMC3861579  PMID: 24348860
esophageal squamous cancer; elderly; chemoradiation; radiation; toxicity
17.  Dopamine D1 Receptors Regulate the Light Dependent Development of Retinal Synaptic Responses 
PLoS ONE  2013;8(11):e79625.
Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina.
PMCID: PMC3834122  PMID: 24260267
18.  Chemical-induced cancer incidence and underlying mechanisms in Fen1 mutant mice 
Oncogene  2010;30(9):10.1038/onc.2010.482.
A critical observation in sporadic cancers is that not all individuals are equally prone to developing cancer following exposure to a given environmental carcinogen. Epidemiological studies have suggested that the difference in the timing of cancer onset in response to exogenous DNA damage is likely attributable to genetic variations, such as those associated with base excision repair genes. To test this long-standing hypothesis and elucidate how a genetic variation in the base excision repair gene flap endonuclease 1 (FEN1) results in susceptibility to environment insults and causes cancer, we established a mutant mouse model carrying a point mutation (E160D) in Fen1. We demonstrate that the E160D mutation impairs the ability of FEN1 to process DNA intermediate structures in long-patch base excision repair using nuclear extracts or reconstituted purified base excision repair proteins. E160D cells were more sensitive to the base damaging agents methylnitrosourea and hydrogen peroxide, leading to DNA strand breaks, chromosomal breakage, and chromosome instabilities in response these DNA insults. We further show that E160D mice are significantly more susceptible to exposure to methylnitrosourea and develop lung adenocarcinoma. Thus, our current study demonstrates that a subtle genetic variation (E160D) in base excision repair genes (FEN1) may cause a functional deficiency in repairing base damage, such that individuals carrying the mutation or similar mutations are predisposed to chemical-induced cancer development.
PMCID: PMC3832200  PMID: 20972458
FEN1; Long-patch base excision repair; methylnitrosourea; tetraploidy; aneuploidy; cancer
19.  Angiopoietin-Like 3 Induces Podocyte F-Actin Rearrangement through Integrin αVβ3/FAK/PI3K Pathway-Mediated Rac1 Activation 
BioMed Research International  2013;2013:135608.
Glomerular podocytes are highly differentiated cells whose foot processes, which are mainly maintained by the architecture of actin filaments, have a unique morphology. A rearrangement of F-actin in podocytes causes changes in their motility that involve foot process effacement and proteinuria in glomerular diseases. Members of the Rho family small GTPases, especially RhoA, Rac1, and Cdc42, are key molecules in the regulation of actin cytoskeleton rearrangement. Our previous study showed that angiopoietin-like 3 (Angptl3) can increase the motility of podocytes in vitro. In this study, we found that recombinant Angptl3 treatment, together with the activation of Rac1, could cause F-actin rearrangement in podocytes. We also found that these effects could be blocked by an integrin αVβ3 inhibitor, implicating integrin αVβ3 as the Angptl3 receptor in its effects on actin cytoskeleton rearrangement. In addition, we studied the molecular pathway for this process. Our results showed that in podocytes, Angptl3 could induce actin filament rearrangement, mainly in lamellipodia formation, and that this process was mediated by integrin αVβ3-mediated FAK and PI3K phosphorylation and Rac1 activation. Our results might provide a new explanation for the effect of Angptl3 on increasing podocyte motility.
PMCID: PMC3835706  PMID: 24294595
20.  A Suspicious Breast Lesion Detected by Dynamic Contrast-Enhanced MRI and Pathologically Confirmed as Capillary Hemangioma: a Case Report and Literature Review 
Korean Journal of Radiology  2013;14(6):869-873.
Breast capillary hemangioma is a type of benign vascular tumor which is rarely seen. Little is known about its presentation on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we describe a case of suspicious breast lesion detected by DCE-MRI and pathologically confirmed as capillary hemangioma. Our case indicates that a small mass with a superficial location, clear boundary, and homogeneous enhancement on DCE-MRI indicates the possible diagnosis of hemangioma, whereby even the lesion presents a washout type curve.
PMCID: PMC3835632  PMID: 24265560
Mammography; Ultrasound; Dynamic contrast-enhanced magnetic resonance imaging; Hemangioma
21.  Molecular Dynamics Simulations of DNA-Free and DNA-Bound TAL Effectors 
PLoS ONE  2013;8(10):e76045.
TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.
PMCID: PMC3794935  PMID: 24130757
22.  The Origin and Evolution of Six Miniature Inverted-Repeat Transposable Elements in Bombyx mori and Rhodnius prolixus 
Genome Biology and Evolution  2013;5(11):2020-2031.
Miniature inverted-repeat transposable elements (MITEs) are a specific group of nonautonomous DNA transposons, and they are distributed in a wide range of hosts. However, the origin and evolutionary history of MITEs in eukaryotic genomes remain unclear. In this study, six MITEs were identified in the silkworm (Bombyx mori). Five elements are grouped into four known superfamilies of DNA transposons, and one represents a novel class of MITEs. Unexpectedly, six similar MITEs are also present in the triatomine bug (Rhodnius prolixus) that diverged from the common ancestor with the silkworm about 370 Ma. However, they show different lengths in two species, suggesting that they are different derivatives of progenitor transposons. Three direct progenitor transposons (Sola1, hobo/Ac/Tam [hAT], and Ginger2) are also identified in some other organisms, and several lines of evidence suggested that these autonomous elements might have been independently and horizontally transferred into their hosts. Furthermore, it is speculated that the twisted-wing parasites may be the candidate vectors for these horizontal transfers. The data presented in this study provide some new insights into the origin and evolutionary history of MITEs in the silkworm and triatomine bug.
PMCID: PMC3845634  PMID: 24115603
MITEs; origin; evolution; Bombyx mori; Rhodnius prolixus
23.  The Structural Basis of Erwinia rhapontici Isomaltulose Synthase 
PLoS ONE  2013;8(9):e74788.
Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop330-339 in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.
PMCID: PMC3777934  PMID: 24069347
24.  Dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) 
In the title compound, C27H22N2O4, the two indole ring systems are approximately perpendicular to each other, with a dihedral angle of 84.5 (5)° between their planes; the benzene ring is twisted with respect to the two indole ring systems at angles of 78.5 (5) and 86.5 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, weak C—H⋯O and C—H⋯N hydrogen bonds, and C—H⋯π inter­actions into a three-dimensional supra­molecular architecture.
PMCID: PMC3790385  PMID: 24098207
25.  Specific Link between Lung and Large Intestine: A New Perspective on Neuropeptide Secretion in Lung with Herbal Laxative Stimulation 
Background. To investigate the specific link between lung and large intestine. Methods. Rat COPD-like model was prepared. Mirabilite or Chinese rhubarb was administrated intragastrically to stimulate the large intestine. Histological analysis of lung inflammation was assessed. The tissues levels of SP, VIP, NK1R, VIPR1, and VIPR2 were measured by using ELISA kits. In addition, mouse model of allergic asthma was prepared. Mirabilite was administrated intragastrically to stimulate the large intestine. Airway responsiveness and lung inflammation were assessed. The tissues levels of SP, VIP, NKA, NKB, NK1R, VIPR1, and VIPR2 were measured by using ELISA kits. Results. Stimulating the intestine with Mangxiao or Dahuang, SP, NK-1R, VIP, VIPR1, and VIPR2 were significantly increased in intestine tissues of rats with COPD and mice with asthma. Meanwhile, the SP and NK1R were significantly decreased, while VIP, VIPR1, and VIPR2 were significantly increased in lung tissues. An abnormal secretion of SP and VIP can be observed in other tissues; however, no marked changes were found in the receptors. The NKA and NKB levels were similar in lung tissues of mice with asthma among groups. Conclusions. Stimulating intestine with Mangxiao or Dahuang can specifically regulate the secretion of SP, VIP, and the receptors in lung tissues.
PMCID: PMC3762168  PMID: 24023578

Results 1-25 (183)