Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Orthopoxvirus Genes That Mediate Disease Virulence and Host Tropism 
Advances in Virology  2012;2012:524743.
In the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox), monkeypox, cowpox, and vaccinia viruses, may be most important. Analysis of the experimental data, presented in this paper, allows to infer that variola virus and other orthopoxviruses possess an unexampled set of genes whose protein products efficiently modulate the manifold defense mechanisms of the host organisms compared with the viruses from other families.
PMCID: PMC3413996  PMID: 22899927
2.  An Increasing Danger of Zoonotic Orthopoxvirus Infections 
PLoS Pathogens  2013;9(12):e1003756.
On May 8, 1980, the World Health Assembly at its 33rd session solemnly declared that the world and all its peoples had won freedom from smallpox and recommended ceasing the vaccination of the population against smallpox. Currently, a larger part of the world population has no immunity not only against smallpox but also against other zoonotic orthopoxvirus infections. Recently, recorded outbreaks of orthopoxvirus diseases not only of domestic animals but also of humans have become more frequent. All this indicates a new situation in the ecology and evolution of zoonotic orthopoxviruses. Analysis of state-of-the-art data on the phylogenetic relationships, ecology, and host range of orthopoxviruses—etiological agents of smallpox (variola virus, VARV), monkeypox (MPXV), cowpox (CPXV), vaccinia (VACV), and camelpox (CMLV)—as well as the patterns of their evolution suggests that a VARV-like virus could emerge in the course of natural evolution of modern zoonotic orthopoxviruses. Thus, there is an insistent need for organization of the international control over the outbreaks of zoonotic orthopoxvirus infections in various countries to provide a rapid response and prevent them from developing into epidemics.
PMCID: PMC3855571  PMID: 24339772
3.  SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family 
BMC Research Notes  2010;3:271.
Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein.
De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins.
Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.
PMCID: PMC2987869  PMID: 20979600
4.  Real-Time PCR System for Detection of Orthopoxviruses and Simultaneous Identification of Smallpox Virus 
Journal of Clinical Microbiology  2004;42(5):1940-1946.
A screening assay for real-time LightCycler (Roche Applied Science, Mannheim, Germany) PCR identification of smallpox virus DNA was developed and compiled in a kit system under good manufacturing practice conditions with standardized reagents. In search of a sequence region unique to smallpox virus, the nucleotide sequence of the 14-kDa fusion protein gene of each of 14 variola virus isolates of the Russian World Health Organization smallpox virus repository was determined and compared to published sequences. PCR primers were designed to detect all Eurasian-African species of the genus Orthopoxvirus. A single nucleotide mismatch resulting in a unique amino acid substitution in smallpox virus was used to design a hybridization probe pair with a specific sensor probe that allows reliable differentiation of smallpox virus from other orthopoxviruses by melting-curve analysis. The applicability was demonstrated by successful amplification of 120 strains belonging to the orthopoxvirus species variola, vaccinia, camelpox, mousepox, cowpox, and monkeypox virus. The melting temperatures (Tms) determined for 46 strains of variola virus (Tms, 55.9 to 57.8°C) differed significantly (P = 0.005) from those obtained for 11 strains of vaccinia virus (Tms, 61.7 to 62.7°C), 15 strains of monkeypox virus (Tms, 61.9 to 62.2°C), 40 strains of cowpox virus (Tms, 61.3 to 63.7°C), 8 strains of mousepox virus (Tm, 61.9°C), and 8 strains of camelpox virus (Tms, 64.0 to 65.0°C). As most of the smallpox virus samples were derived from infected cell cultures and tissues, smallpox virus DNA could be detected in a background of human DNA. By applying probit regression analysis, the analytical sensitivity was determined to be 4 copies of smallpox virus target DNA per sample. The DNAs of several human herpesviruses as well as poxviruses other than orthopoxviruses were not detected by this method. The assay proved to be a reliable technique for the detection of orthopoxviruses, with the advantage that it can simultaneously identify variola virus.
PMCID: PMC404623  PMID: 15131152
5.  Conserved Surface-Exposed K/R-X-K/R Motifs and Net Positive Charge on Poxvirus Complement Control Proteins Serve as Putative Heparin Binding Sites and Contribute to Inhibition of Molecular Interactions with Human Endothelial Cells: a Novel Mechanism for Evasion of Host Defense 
Journal of Virology  2000;74(12):5659-5666.
Vaccinia virus complement control protein (VCP) has been shown to possess the ability to inhibit both classical and alternative complement pathway activation. The newly found ability of this protein to bind to heparin has been shown in previous studies to result in uptake by mast cells, possibly promoting tissue persistence. It has also been shown to reduce chemotactic migration of leukocytes by blocking chemokine binding. In addition, this study shows that VCP—through its ability to bind to glycosaminoglycans (heparin-like molecules) on the surface of human endothelial cells—is able to block antibody binding to surface major histocompatibility complex class I molecules. Since heparin binding is critical for many functions of this protein, we have attempted to characterize the molecular basis for this interaction. Segments of this protein, generated by genetic engineering of the DNA encoding VCP into the Pichia pastoris expression system, were used to localize the regions with heparin binding activity. These regions were then analyzed to more specifically define their properties for binding. It was found that the number of putative binding sites (K/R-X-K/R), the overall positive charge, and the percentage of positively charged amino acids within the protein were responsible for this interaction.
PMCID: PMC112054  PMID: 10823874

Results 1-5 (5)