PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  Influence of HLA Class I Haplotypes on HIV-1 Seroconversion and Disease Progression in Pumwani Sex Worker Cohort 
PLoS ONE  2014;9(7):e101475.
We examined the effect of HLA class I haplotypes on HIV-1 seroconversion and disease progression in the Pumwani sex worker cohort. This study included 595 HIV-1 positive patients and 176 HIV negative individuals. HLA-A, -B, and -C were typed to 4-digit resolution using sequence-based typing method. HLA class I haplotype frequencies were estimated using PyPop 32-0.6.0. The influence of haplotypes on time to seroconversion and CD4+ T cell decline to <200 cells/mm3 were analyzed by Kaplan-Meier analysis using SPSS 13.0. Before corrections for multiple comparisons, three 2-loci haplotypes were significantly associated with faster seroconversion, including A*23∶01-C*02∶02 (p = 0.014, log rank(LR) = 6.06, false-discovery rate (FDR) = 0.056), B*42∶01-C*17∶01 (p = 0.01, LR = 6.60, FDR = 0.08) and B*07∶02-C*07∶02 (p = 0.013, LR = 6.14, FDR = 0.069). Two A*74∶01 containing haplotypes, A*74∶01-B*15∶03 (p = 0.047, LR = 3.942, FDR = 0.068) and A*74∶01-B*15∶03-C*02∶02 (p = 0.045, LR = 4.01, FDR = 0.072) and B*14∶02-C*08∶02 (p = 0.021, LR = 5.36, FDR = 0.056) were associated with slower disease progression. Five haplotypes, including A*30∶02-B*45∶01 (p = 0.0008, LR = 11.183, FDR = 0.013), A*30∶02-C*16∶01 (p = 0.015, LR = 5.97, FDR = 0.048), B*53∶01-C*04∶01 (p = 0.010, LR = 6.61, FDR = 0.08), B*15∶10-C*03∶04 (p = 0.031, LR = 4.65, FDR = 0.062), and B*58∶01-C*03∶02 (p = 0.037, LR = 4.35, FDR = 0.066) were associated with faster progression to AIDS. After FDR corrections, only the associations of A*30∶02-B*45∶01 and A*30∶02-C*16∶01 with faster disease progression remained significant. Cox regression and deconstructed Kaplan-Meier survival analysis showed that the associations of haplotypes of A*23∶01-C*02∶02, B*07∶02-C*07∶02, A*74∶01-B*15∶03, A*74∶01-B*15∶03-C*02∶02, B*14∶02-C*08∶02 and B*58∶01-C*03∶02 with differential seroconversion or disease progression are due to the dominant effect of a single allele within the haplotypes. The true haplotype effect was observed with A*30∶02-B*45∶01, A*30∶02-C*16∶02, B*53∶01-C*04∶01 B*15∶10-C*03∶04, and B*42∶01-C*17∶01. In these cases, the presence of both alleles accelerated the disease progression or seroconversion than any of the single allele within the haplotypes. Our study showed that the true effects of HLA class I haplotypes on HIV seroconversion and disease progression exist and the associations of HLA class I haplotype can also be due to the dominant effect of a single allele within the haplotype.
doi:10.1371/journal.pone.0101475
PMCID: PMC4081595  PMID: 24992306
3.  Interplay between HIV-1 and Host Genetic Variation: A Snapshot into Its Impact on AIDS and Therapy Response 
Advances in Virology  2012;2012:508967.
As of February 2012, 50 circulating recombinant forms (CRFs) have been reported for HIV-1 while one CRF for HIV-2. Also according to HIV sequence compendium 2011, the HIV sequence database is replete with 414,398 sequences. The fact that there are CRFs, which are an amalgamation of sequences derived from six or more subtypes (CRF27_cpx (cpx refers to complex) is a mosaic with sequences from 6 different subtypes besides an unclassified fragment), serves as a testimony to the continual divergent evolution of the virus with its approximate 1% per year rate of evolution, and this phenomena per se poses tremendous challenge for vaccine development against HIV/AIDS, a devastating disease that has killed 1.8 million patients in 2010. Here, we explore the interaction between HIV-1 and host genetic variation in the context of HIV/AIDS and antiretroviral therapy response.
doi:10.1155/2012/508967
PMCID: PMC3361994  PMID: 22666249

Results 1-3 (3)