Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients 
JCI Insight  null;1(19):e89631.
BACKGROUND. Cell-free circulating nucleic acids, including 22-nt microRNAs (miRNAs), represent noninvasive biomarkers for treatment response monitoring of cancer patients. While the majority of plasma miRNA is bound to proteins, a smaller, less well-characterized pool is associated with extracellular vesicles (EVs). Here, we addressed whether EV-associated miRNAs reflect metabolic disease in classical Hodgkin lymphoma (cHL) patients.
METHODS. With standardized size-exclusion chromatography (SEC), we isolated EV-associated extracellular RNA (exRNA) fractions and protein-bound miRNA from plasma of cHL patients and healthy subjects. We performed a comprehensive small RNA sequencing analysis and validation by TaqMan qRT-PCR for candidate discovery. Fluorodeoxyglucose-PET (FDG-PET) status before treatment, directly after treatment, and during long-term follow-up was compared directly with EV miRNA levels.
RESULTS. The plasma EV miRNA repertoire was more extensive compared with protein-bound miRNA that was heavily dominated by a few abundant miRNA species and was less informative of disease status. Purified EV fractions of untreated cHL patients and tumor EVs had enriched levels of miR24-3p, miR127-3p, miR21-5p, miR155-5p, and let7a-5p compared with EV fractions from healthy subjects and disease controls. Serial monitoring of EV miRNA levels in patients before treatment, directly after treatment, and during long-term follow-up revealed robust, stable decreases in miRNA levels matching a complete metabolic response, as observed with FDG-PET. Importantly, EV miRNA levels rose again in relapse patients.
CONCLUSION. We conclude that cHL-related miRNA levels in circulating EVs reflect the presence of vital tumor tissue and are suitable for therapy response and relapse monitoring in individual cHL patients.
FUNDING. Cancer Center Amsterdam Foundation (CCA-2013), Dutch Cancer Society (KWF-5510), Technology Foundation STW (STW Perspectief CANCER-ID).
The extracellular RNA repertoire in circulating extracellular vesicles is useful indicator of therapy response and relapse in classical Hodgkin lymphoma patients.
PMCID: PMC5111516  PMID: 27882350
3.  Physiological evidence for diversification of IFNα- and IFNβ-mediated response programs in different autoimmune diseases 
Activation of the type I interferon (IFN) response program is described for several autoimmune diseases, including systemic lupus erythematosus (SLE), multiple sclerosis (MS), myositis (IIM) and rheumatoid arthritis (RA). While IFNα contributes to SLE pathology, IFNβ therapy is often beneficial in MS, implying different immunoregulatory roles for these IFNs. This study was aimed to investigate potential diversification of IFNα-and IFNβ-mediated response programs in autoimmune diseases.
Peripheral blood gene expression of 23 prototypical type I IFN response genes (IRGs) was determined in 54 healthy controls (HCs), 69 SLE (47 test, 22 validation), 149 IFNβ-treated MS (71 test, 78 validation), 160 untreated MS, 78 IIM and 76 RA patients. Patients with a type I IFN signature were selected for analysis.
We identified IFNα- and IFNβ-specific response programs (GC-A and GC-B, respectively) in SLE and IFNβ-treated MS patients. Concordantly, the GC-A/GC-B log-ratio was positive for all SLE patients and negative for virtually all IFNβ-treated MS patients, which was confirmed in additional cohorts. Applying this information to other autoimmune diseases, IIM patients displayed positive GC-A/GC-B log-ratios, indicating predominant IFNα activity. The GC-A/GC-B log-ratio in RA was lower and approached zero in part of the patients, implying relative importance of both clusters. Remarkably, GC-A/GC-B log-ratios appeared most heterogeneous in untreated MS; half of the patients displayed GC-A dominance, whereas others showed GC-B dominance or log-ratios near zero.
Our findings show diversification of the type I IFN response in autoimmune diseases, suggesting different pathogenic roles of the type I IFNs.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-016-0946-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4756531  PMID: 26882897
Type I interferons; Gene expression profiling; Autoimmune diseases; Rheumatic diseases; Multiple sclerosis
4.  Intracellular signaling controlled by the endosomal-exosomal pathway 
Tight control of intracellular signaling is essential for developmental processes such as cell differentiation, migration but also for maintaining tissue homeostasis. Disruption in the control of these signaling pathways can result in cell death (apoptosis), anergy or uncontrolled cell proliferation and growth leading to cancer. In multicellular organisms, timely termination of signaling is thus equally important as initiation. Known pathways for downregulating membrane receptor-mediated signaling are mediated via specialized endosomal organelles known as lysosomes and proteosomes that degrade such proteins in the cytoplasm. An alternative pathway for attenuating receptor-mediated signaling was recently discovered independently by the group of M. Caplan and our own group.1,2 It appears that apart from the classical protein degradation machineries, the release of signaling proteins also effectively restricts signaling of at least two major signal transduction routes; the canonical Wnt/β-catenin and NFκB pathways. Expelling proteins from the cell, rather than coordinated degradation in lysosomes may involve defined protein modifications, such as ubiquitination, myristyolation, and/or palmitoylation, but little experimental data are currently available. Although the secretion of proteins via exosomes starts by accumulation within multivesicular bodies (MVBs), a key distinction with degredatory MVBs is that exosome-producing MVBs seem to preferentially fuse with the plasmamembrane (Fig. 1). Here we discuss the latest developments in the biology of exosomes and their unexpected effect on intracellular signal transduction.
PMCID: PMC3291324  PMID: 22482020
exosomes; intercellular communication; microvesicles; small RNA; virus
5.  Exosomes 
Exosomes are specialized membranous nano-sized vesicles derived from endocytic compartments that are released by many cell types. Microvesicles are distinctive from exosomes in that they are produced by shedding of the plasmamembrane and usually larger in size (>1 µm). Exosome biogenesis involves the tightly controlled process of inward budding from the limiting membrane of multivesicular bodies (MVBs). This results in numerous intraluminal vesicles in the lumen of MVBs that contain distinct protein repertoires. It has been suggested that microvesicles shed by certain tumor cells hold functional messenger RNA (mRNA) that may promote tumor progression. We discovered that purified exosomes contain functional microRNAs (miRNAs) and small RNA, but detected little mRNA. Although a clear and decisive distinction between microvesicles and exosomes cannot be made and different subsets of exosomes exist, we speculate that exosomes are specialized in carrying small RNA including the class 22–25 nucleotide regulatory miRNAs. To demonstrate this we developed a co-culture system and found that exosomes are continuously secreted and transferred from Epstein Barr virus (EBV)-infected cells to uninfected neighboring cells. Throughout exosome transfer, the exogenous EBV-encoded miRNAs were delivered to subcellular sites of miRNA-mediated gene repression. Additionally, we found evidence that mature miRNAs are transferred between circulating cells in humans, since we detected EBV-miRNAs in non-infected cells in the peripheral blood of patients that include monocytes and T cells. In this addendum we discuss these findings in the context of recently published papers that advanced our current knowledge of exosome physiology, (mi)RNA function and intercellular RNA transfer. Based on this information we propose that an intercellular (miRNA-based) mode of signal transmission may be well suited in controlling space-confined processes such as the initiation of immune responses in the secondary (peripheral) lymphoid tissues or in a tumor microenvironment. Deciphering the molecular mechanism(s) that control small RNA loading into exosomes and transfer to recipient cells in vitro will provide new evidence for the physiological relevance of vesicle-mediated intercellular communication in vivo.
PMCID: PMC2974077  PMID: 21057637
exosomes; microvesicles; small RNA; virus; intercellular communication
6.  Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species 
Administration of mesenchymal stem cells (MSCs) represents a promising treatment option for patients suffering from immunological and degenerative disorders. Accumulating evidence indicates that the healing effects of MSCs are mainly related to unique paracrine properties, opening opportunities for secretome-based therapies. Apart from soluble factors, MSCs release functional small RNAs via extracellular vesicles (EVs) that seem to convey essential features of MSCs. Here we set out to characterize the full small RNAome of MSC-produced exosomes.
We set up a protocol for isolating exosomes released by early passage adipose- (ASC) and bone marrow-MSCs (BMSC) and characterized them via electron microscopy, protein analysis and small RNA-sequencing. We developed a bioinformatics pipeline to define the exosome-enclosed RNA species and performed the first complete small RNA characterization of BMSCs and ASCs and their corresponding exosomes in biological replicates.
Our analysis revealed that primary ASCs and BMSCs have highly similar small RNA expression profiles dominated by miRNAs and snoRNAs (together 64-71 %), of which 150–200 miRNAs are present at physiological levels. In contrast, the miRNA pool in MSC exosomes is only 2-5 % of the total small RNAome and is dominated by a minor subset of miRNAs. Nevertheless, the miRNAs in exosomes do not merely reflect the cellular content and a defined set of miRNAs are overrepresented in exosomes compared to the cell of origin. Moreover, multiple highly expressed miRNAs are precluded from exosomal sorting, consistent with the notion that these miRNAs are involved in functional repression of RNA targets. While ASC and BMSC exosomes are similar in RNA class distribution and composition, we observed striking differences in the sorting of evolutionary conserved tRNA species that seems associated with the differentiation status of MSCs, as defined by Sox2, POU5F1A/B and Nanog expression.
We demonstrate that primary MSCs release small RNAs via exosomes, which are increasingly implicated in intercellular communications. tRNAs species, and in particular tRNA halves, are preferentially released and their specific sorting into exosomes is related to MSC tissue origin and stemness. These findings may help to understand how MSCs impact neighboring or distant cells with possible consequences for their therapeutic usage.
Electronic supplementary material
The online version of this article (doi:10.1186/s13287-015-0116-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4529699  PMID: 26129847
7.  Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting 
Journal of Extracellular Vesicles  2015;4:10.3402/jev.v4.26760.
Exosomes are small vesicles that mediate cell–cell communication. They contain proteins, lipids and RNA, and evidence is accumulating that these molecules are specifically sorted for release via exosomes. We recently showed that endothelial-cell-produced exosomes promote angiogenesis in vivo in a small RNA-dependent manner. Recent deep sequencing studies in exosomes from lymphocytic origin revealed a broad spectrum of small RNAs. However, selective depletion or incorporation of small RNA species into endothelial exosomes has not been studied extensively. With next generation sequencing, we identified all known non-coding RNA classes, including microRNAs (miRNAs), small nucleolar RNAs, yRNAs, vault RNAs, 5p and 3p fragments of miRNAs and miRNA-like fragments. In addition, we mapped many fragments of messenger RNAs (mRNAs) and mitochondrial RNAs (mtRNAs). The distribution of small RNAs in exosomes revealed a considerable overlap with the distribution in the producing cells. However, we identified a remarkable enrichment of yRNA fragments and mRNA degradation products in exosomes consistent with yRNAs having a role in degradation of structured and misfolded RNAs in close proximity to endosomes. We propose that endothelial endosomes selectively sequester cytoplasmic RNA-degrading machineries taking part in gene regulation. The release of these regulatory RNAs via exosomes may have implications for endothelial cell–cell communication.
PMCID: PMC4450249  PMID: 26027894
extracellular vesicles; microvesicles; next generation sequencing; quality control
8.  ISEV position paper: extracellular vesicle RNA analysis and bioinformatics 
Journal of Extracellular Vesicles  2013;2:10.3402/jev.v2i0.22859.
Extracellular vesicles (EVs) are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA) has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV) held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.
PMCID: PMC3873759  PMID: 24376909
extracellular vesicles; deep sequencing; evRNA; RNA; bioinformatics
9.  Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy 
Mesenchymal stem cells (MSCs) are adult multipotent cells that give rise to various cell types of the mesodermal germ layer. MSCs are of great interest in the field of regenerative medicine and cancer therapy because of their unique ability to home to damaged and cancerous tissue. These cells also regulate the immune response and contribute to reparative processes in different pathological conditions, including musculoskeletal and cardiovascular diseases. The use of MSCs for tissue repair was initially based on the hypothesis that these cells home to and differentiate within the injured tissue into specialized cells. However, it now appears that only a small proportion of transplanted MSCs actually integrate and survive in host tissues. Thus, the predominant mechanism by which MSCs participate in tissue repair seems to be related to their paracrine activity. Indeed, MSCs provide the microenvironment with a multitude of trophic and survival signals including growth factors and cytokines. Recent discoveries suggest that lipid microvesicles released by MSCs may also be important in the physiological function of these cells. Over the past few years the biological relevance of micro- and nano-vesicles released by cells in intercellular communication has been established. Alongside the conventional mediators of cell secretome, these sophisticated nanovesicles transfer proteins, lipids and, most importantly, various forms of RNAs to neighboring cells, thereby mediating a variety of biological responses. The physiological role of MSC-derived vesicles (MSC-MVs) is currently not well understood. Nevertheless, encouraging results indicate that MSC-MVs have similar protective and reparative properties as their cellular counterparts in tissue repair and possibly anti-cancer therapy. Thus, MSC-MVs represent a promising opportunity to develop novel cell-free therapy approaches that might overcome the obstacles and risks associated with the use of native or engineered stem cells.
PMCID: PMC3434369  PMID: 22973239
mesenchymal stem cell (MSC); microvesicles; exosomes; regenerative medicine; therapy
10.  Extracellular Vesicles and Their Convergence with Viral Pathways 
Advances in Virology  2012;2012:767694.
Extracellular vesicles (microvesicles), such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.
PMCID: PMC3410301  PMID: 22888349
11.  The Rac activator Tiam1 is required for α3β1-mediated laminin-5 deposition, cell spreading, and cell migration 
The Journal of Cell Biology  2005;171(5):871-881.
The Rho-like guanosine triphosphatase Rac1 regulates various signaling pathways, including integrin-mediated adhesion and migration of cells. However, the mechanisms by which integrins signal toward Rac are poorly understood. We show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis 1) is required for the integrin-mediated laminin (LN)-5 deposition, spreading, and migration of keratinocytes. In contrast to wild-type keratinocytes, Tiam1-deficient (Tiam1−/−) keratinocytes are unable to adhere to and spread on a glass substrate because they are unable to deposit their own LN5 substrate. Both Tiam1 and V12Rac1 can rescue the defects of Tiam1−/− keratinocytes, indicating that these deficiencies are caused by impaired Tiam1-mediated Rac activation. Tiam1−/− cells are unable to activate Rac upon α3β1-mediated adhesion to an exogenous LN5 substrate. Moreover, Tiam1 deficiency impairs keratinocyte migration in vitro and reepithelialization of excision wounds in mouse skin. Our studies indicate that Tiam1 is a key molecule in α3β1-mediated activation of Rac, which is essential for proper production and secretion of LN5, a requirement for the spreading and migration of keratinocytes.
PMCID: PMC2171282  PMID: 16330714

Results 1-11 (11)