Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Chitosan Nanoparticle Encapsulated Hemagglutinin-Split Influenza Virus Mucosal Vaccine 
AAPS PharmSciTech  2013;15(2):317-325.
Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine.
PMCID: PMC3969489  PMID: 24343789
chitosan nanoparticles; delivery systems; influenza virus; intranasal; split influenza vaccine
2.  GP96 Interacts with HHV-6 during Viral Entry and Directs It for Cellular Degradation 
PLoS ONE  2014;9(12):e113962.
CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.
PMCID: PMC4254946  PMID: 25470779
3.  Varicella-Zoster Virus ORF49 Functions in the Efficient Production of Progeny Virus through Its Interaction with Essential Tegument Protein ORF44 
Journal of Virology  2014;88(1):188-201.
The ORF49 tegument protein of varicella-zoster virus (VZV) is one of the core gene products that is conserved among herpesvirus family members. Although ORF49 is known to be a cell-tropic factor, its detailed functions remain elusive. ORF44 is another core gene product reported to be essential, although its characterization and detailed functional analysis have not been reported. These two core gene products form a complex in other herpesviruses beyond the host species and herpesvirus subfamilies. Here, we show that complex formation between ORF44 and ORF49 is conserved in VZV. We serendipitously found that binding is eliminated by an amino acid substitution at position 129 (phenylalanine 129), and four amino acids in the carboxyl-terminal half of the acidic cluster in ORF49 (i.e., aspartate-phenylalanine-aspartate-glutamate from positions 41 to 44 [41DFDE44]) were identified as its binding motif. Alanine substitutions in each domain rendered the ORF44F129A mutation lethal for VZV, similar to deletion of the entire ORF44. The phenotype of the ORF49-41AAAA44 mutation was comparable to that of the ORF49-defective virus, including small-plaque formation, impaired growth, and low infectious virus production. These results suggest that the interaction between ORF44 and ORF49 is essential for their role in VZV infection and that ORF49 is required for the efficient production of infectious progeny virus mediated by the conserved interaction between the two proteins.
PMCID: PMC3911743  PMID: 24155375
4.  An MDCK Cell Culture-Derived Formalin-Inactivated Influenza Virus Whole-Virion Vaccine from an Influenza Virus Library Confers Cross-Protective Immunity by Intranasal Administration in Mice 
It is currently impossible to predict the next pandemic influenza virus strain. We have thus established a library of influenza viruses of all hemagglutinin and neuraminidase subtypes and their genes. In this article, we examine the applicability of a rapid production model for the preparation of vaccines against emerging pandemic influenza viruses. This procedure utilizes the influenza virus library, cell culture-based vaccine production, and intranasal administration to induce a cross-protective immune response. First, an influenza virus reassortant from the library, A/duck/Hokkaido/Vac-3/2007 (H5N1), was passaged 22 times (P22) in Madin-Darby canine kidney (MDCK) cells. The P22 virus had a titer of >2 ×108 PFU/ml, which was 40 times that of the original strain, with 4 point mutations, which altered amino acids in the deduced protein sequences encoded by the PB2 and PA genes. We then produced a formalin-inactivated whole-virion vaccine from the MDCK cell-cultured A/duck/Hokkaido/Vac-3/2007 (H5N1) P22 virus. Intranasal immunization of mice with this vaccine protected them against challenges with lethal influenza viruses of homologous and heterologous subtypes. We further demonstrated that intranasal immunization with the vaccine induced cross-reactive neutralizing antibody responses against the homotypic H5N1 influenza virus and its antigenic variants and cross-reactive cell-mediated immune responses to the homologous virus, its variants within a subtype, and even an influenza virus of a different subtype. These results indicate that a rapid model for emergency vaccine production may be effective for producing the next generation of pandemic influenza virus vaccines.
PMCID: PMC3697442  PMID: 23637045
5.  Identification of the Human Herpesvirus 6A gQ1 Domain Essential for Its Functional Conformation 
Journal of Virology  2013;87(12):7054-7063.
Human herpesvirus 6 is a T lymphotropic herpesvirus, long classified into variants A and B (HHV-6A and HHV-6B) based on differences in sequence and pathogenicity. Recently, however, HHV-6A and HHV-6B were reclassified as different species. Here, we isolated a neutralizing monoclonal antibody (Mab) named AgQ 1-1 that was specific for HHV-6A glycoprotein Q1 (AgQ1), and we showed that amino acid residues 494 to 497 of AgQ1 were critical for its recognition by this Mab. This region was also essential for AgQ1's complex formation with gH, gL, and gQ2, which might be important for viral binding to the cellular receptor, CD46. In addition, amino acid residues 494 to 497 are essential for viral replication. Interestingly, this sequence corresponds to the domain on HHV-6B gQ1 that is critical for recognition by an HHV-6B-specific neutralizing Mab. Within this domain, only Q at position 496 of HHV-6A is distinct from the HHV-6B sequence; however, the mutant AgQ1(Q496E) was still clearly recognized by the Mab AgQ 1-1. Surprisingly, replacement of the adjacent amino acid, in mutant AgQ1(C495A), resulted in poor recognition by Mab AgQ 1-1, and AgQ1(C495A) could not form the gH/gL/gQ1/gQ2 complex. Furthermore, the binding ability of mutant AgQ1(L494A) with CD46 decreased, although it could form the gH/gL/gQ1/gQ2 complex and it showed clear reactivity to Mab AgQ 1-1. These data indicated that amino acid residues 494 to 497 of AgQ1 were critical for the recognition by Mab AgQ 1-1 and essential for AgQ1's functional conformation.
PMCID: PMC3676137  PMID: 23596294
6.  The Attenuated Genotype of Varicella-Zoster Virus Includes an ORF0 Transitional Stop Codon Mutation 
Journal of Virology  2012;86(19):10695-10703.
Varicella-zoster virus (VZV) is the first of the human herpesviruses to be attenuated and subsequently approved as a live vaccine to prevent varicella and herpes zoster. Both the attenuated VZV vaccine, called vaccine Oka or vOka, and the parental strain pOka have been completely sequenced. Yet the specific determinants of attenuation are uncertain. The open reading frame (ORF) with the most single nucleotide polymorphisms (SNPs), ORF62, encodes the regulatory protein IE62, but IE62 studies have failed to define a specific SNP associated with attenuation. We have completed next-generation sequencing of the VZV Ellen genome, a strain known to be highly attenuated by its very limited replication in human skin xenografts in the SCID mouse model of VZV pathogenesis. A comparative analysis of the Ellen sequence with all other complete VZV sequences was extremely informative. In particular, an unexpected finding was a stop codon mutation in Ellen ORF0 (herpes simplex virus UL56 homolog) identical to one found in vOka, combined with the absence of polymorphisms in most Ellen ORFs that were known to be mutated in vOka. The mutated ORF0 protein was also imaged in both two dimensions and three dimensions by confocal microscopy. The probability of two VZV strains not connected by a recent common ancestor having an identical ORF0 SNP by chance would be 1 × 10−8, in other words, extremely unlikely. Taken together, these bioinformatics analyses strongly suggest that the stop codon ORF0 SNP is one of the determinants of the attenuation genotype of live VZV vaccines.
PMCID: PMC3457260  PMID: 22837206
7.  Complementation of the Function of Glycoprotein H of Human Herpesvirus 6 Variant A by Glycoprotein H of Variant B in the Virus Life Cycle 
Journal of Virology  2012;86(16):8492-8498.
Human herpesvirus 6 (HHV-6) is a T-cell-tropic betaherpesvirus. HHV-6 can be classified into two variants, HHV-6 variant A (HHV-6A) and HHV-6B, based on genetic, antigenic, and cell tropisms, although the homology of their entire genomic sequences is nearly 90%. The HHV-6A glycoprotein complex gH/gL/gQ1/gQ2 is a viral ligand that binds to the cellular receptor human CD46. Because gH has 94.3% amino acid identity between the variants, here we examined whether gH from one variant could complement its loss in the other. Recently, we successfully reconstituted HHV-6A from its cloned genome in a bacterial artificial chromosome (BAC) (rHHV-6ABAC). Using this system, we constructed HHV-6ABAC DNA containing the HHV-6B gH (BgH) gene instead of the HHV-6A gH (AgH) gene in Escherichia coli. Recombinant HHV-6ABAC expressing BgH (rHHV-6ABAC-BgH) was successfully reconstituted. In addition, a monoclonal antibody that blocks HHV-6B but not HHV-6A infection neutralized rHHV-6ABAC-BgH but not rHHV-6ABAC. These results indicate that HHV-6B gH can complement the function of HHV-6A gH in the viral infectious cycle.
PMCID: PMC3421736  PMID: 22647694
8.  Intranasal Immunization with a Formalin-Inactivated Human Influenza A Virus Whole-Virion Vaccine Alone and Intranasal Immunization with a Split-Virion Vaccine with Mucosal Adjuvants Show Similar Levels of Cross-Protection 
The antigenicity of seasonal human influenza virus changes continuously; thus, a cross-protective influenza vaccine design needs to be established. Intranasal immunization with an influenza split-virion (SV) vaccine and a mucosal adjuvant induces cross-protection; however, no mucosal adjuvant has been assessed clinically. Formalin-inactivated intact human and avian viruses alone (without adjuvant) induce cross-protection against the highly pathogenic H5N1 avian influenza virus. However, it is unknown whether seasonal human influenza formalin-inactivated whole-virion (WV) vaccine alone induces cross-protection against strains within a subtype or in a different subtype of human influenza virus. Furthermore, there are few reports comparing the cross-protective efficacy of the WV vaccine and SV vaccine-mucosal adjuvant mixtures. Here, we found that the intranasal human influenza WV vaccine alone induced both the innate immune response and acquired immune response, resulting in cross-protection against drift variants within a subtype of human influenza virus. The cross-protective efficacy conferred by the WV vaccine in intranasally immunized mice was almost the same as that conferred by a mixture of SV vaccine and adjuvants. The level of cross-protective efficacy was correlated with the cross-reactive neutralizing antibody titer in the nasal wash and bronchoalveolar fluids. However, neither the SV vaccine with adjuvant nor the WV vaccine induced cross-reactive virus-specific cytotoxic T-lymphocyte activity. These results suggest that the intranasal human WV vaccine injection alone is effective against variants within a virus subtype, mainly through a humoral immune response, and that the cross-protection elicited by the WV vaccine and the SV vaccine plus mucosal adjuvants is similar.
PMCID: PMC3393367  PMID: 22552600
9.  Features of Human Herpesvirus-6A and -6B Entry 
Advances in Virology  2012;2012:384069.
Human herpesvirus-6 (HHV-6) is a T lymphotropic herpesvirus belonging to the Betaherpesvirinae subfamily. HHV-6 was long classified into variants A and B (HHV-6A and HHV-6B); however, recently, HHV-6A and HHV-6B were reclassified as different species. The process of herpesvirus entry into target cells is complicated, and in the case of HHV-6A and HHV-6B, the detailed mechanism remains to be elucidated, although both viruses are known to enter cells via endocytosis. In this paper, (1) findings about the cellular receptor and its ligand for HHV-6A and HHV-6B are summarized, and (2) a schematic model of HHV-6A's replication cycle, including its entry, is presented. In addition, (3) reports showing the importance of lipids in both the HHV-6A envelope and target-cell membrane for viral entry are reviewed, and (4) glycoproteins involved in cell fusion are discussed.
PMCID: PMC3485865  PMID: 23133452
10.  Poly-γ-Glutamic Acid Nanoparticles and Aluminum Adjuvant Used as an Adjuvant with a Single Dose of Japanese Encephalitis Virus-Like Particles Provide Effective Protection from Japanese Encephalitis Virus 
To maintain immunity against Japanese encephalitis virus (JEV), a formalin-inactivated Japanese encephalitis (JE) vaccine should be administered several times. The repeated vaccination is not helpful in the case of a sudden outbreak of JEV or when urgent travel to a high-JEV-risk region is required; however, there are few single-injection JE vaccine options. In the present study, we investigated the efficacy of a single dose of a new effective JE virus-like particle preparation containing the JE envelope protein (JE-VLP). Although single administration with JE-VLP protected less than 50% of mice against lethal JEV infection, adding poly(γ-glutamic acid) nanoparticles (γ-PGA-NPs) or aluminum adjuvant (alum) to JE-VLP significantly protected more than 90% of the mice. A single injection of JE-VLP with either γ-PGA-NPs or alum induced a significantly greater anti-JEV neutralizing antibody titer than JE-VLP alone. The enhanced titers were maintained for more than 6 months, resulting in long-lasting protection of 90% of the immunized mice. Although the vaccine design needs further modification to reach 100% protection, a single dose of JE-VLP with γ-PGA-NPs may be a useful step in developing a next-generation vaccine to stop a JE outbreak or to immunize travelers or military personnel.
PMCID: PMC3255961  PMID: 22089248
11.  Analysis of a Neutralizing Antibody for Human Herpesvirus 6B Reveals a Role for Glycoprotein Q1 in Viral Entry ▿  
Journal of Virology  2011;85(24):12962-12971.
Human herpesvirus 6 (HHV-6) is a T cell-tropic betaherpesvirus. HHV-6 can be classified into two variants, HHV-6A and HHV-6B, based on differences in their genetic, antigenic, and growth characteristics and cell tropisms. The function of HHV-6B should be analyzed more in its life cycle, as more than 90% of people have the antibodies for HHV-6B but not HHV-6A. It has been shown that the cellular receptor for HHV-6A is human CD46 and that the viral ligand for CD46 is the envelope glycoprotein complex gH/gL/gQ1/gQ2; however, the receptor-ligand pair used by HHV-6B is still unknown. In this study, to identify the glycoprotein(s) important for HHV-6B entry, we generated monoclonal antibodies (MAbs) that inhibit infection by HHV-6B. Most of these MAbs were found to recognize gQ1, indicating that HHV-6B gQ1 is critical for virus entry. Interestingly, the recognition of gQ1 by the neutralizing MAb was enhanced by coexpression with gQ2. Moreover, gQ1 deletion or point mutants that are not recognized by the MAb could nonetheless associate with gQ2, indicating that although the MAb recognized the conformational epitope of gQ1 exposed by the gQ2 interaction, this epitope was not related to the gQ2 binding domain. Our study shows that HHV-6B gQ1 is likely a ligand for the HHV-6B receptor, and the recognition site for this MAb will be a promising target for antiviral agents.
PMCID: PMC3233151  PMID: 21957287
12.  Human Herpesvirus 6 Glycoprotein Complex Formation Is Required for Folding and Trafficking of the gH/gL/gQ1/gQ2 Complex and Its Cellular Receptor Binding ▿  
Journal of Virology  2011;85(21):11121-11130.
Human herpesvirus 6 (HHV-6) is a T-cell-tropic betaherpesvirus. A glycoprotein (g) complex that is unique to HHV-6, gH/gL/gQ1/gQ2, is a viral ligand for its cellular receptor, human CD46. However, whether complex formation or one component of the complex is required for CD46 binding and how the complex is transported in cells are open questions. Furthermore, in HHV-6-infected cells the gQ1 protein modified with N-linked glycans is expressed in two forms with different molecular masses: an 80-kDa form (gQ1-80K) and a 74-kDa form (gQ1-74K). Only gQ1-80K, but not gQ1-74K, forms the complex with gQ2, gH, and gL, and this four-component complex is incorporated into mature virions. Here, we characterized the molecular context leading to the maturation of gQ1 by expressing combinations of the individual gH/gL/gQ1/gQ2 components in 293T cells. Surprisingly, only when all four molecules were expressed was a substantial amount of gQ1-80K detected, indicating that all three of the other molecules (gQ2, gH, and gL) were necessary and sufficient for gQ1 maturation. We also found that only the tetrameric complex, and not its subsets, binds to CD46. Finally, a gQ2-null virus constructed in the BAC (bacterial artificial chromosome) system could not be reconstituted, indicating that gQ2 is essential for virus growth. These results show that gH, gL, gQ1, and gQ2 are all essential for the trafficking and proper folding of the gH/gL/gQ1/gQ2 complex and, thus, for HHV-6 infection.
PMCID: PMC3194968  PMID: 21849437
13.  The Shozu Herpes Zoster (SHEZ) Study: Rationale, Design, and Description of a Prospective Cohort Study 
Journal of Epidemiology  2012;22(2):167-174.
The incidence and risk factors for herpes zoster have been studied in cross-sectional and cohort studies, although most such studies have been conducted in Western countries. Evidence from Asian populations is limited, and no cohort study has been conducted in Asia. We are conducting a 3-year prospective cohort study in Shozu County in Kagawa Prefecture, Japan to determine the incidence and predictive and immunologic factors for herpes zoster among Japanese.
The participants are followed for 3 years, and a telephone survey is conducted every 4 weeks. The participants were assigned to 1 of 3 studies. Participants in study A gave information on past history of herpes zoster and completed health questionnaires. Study B participants additionally underwent varicella-zoster virus (VZV) skin testing, and study C participants additionally underwent blood testing. If the participants develop herpes zoster, we evaluate clinical symptoms, measure cell-mediated immunity and humoral immunity using venous blood sampling, photograph skin areas with rash, conduct virus identification testing by polymerase chain reaction (PCR) and virus isolation from crust sampling, and evaluate postherpetic pain.
We recruited 12 522 participants aged 50 years or older in Shozu County from December 2009 through November 2010. The participation rate was 65.7% of the target population.
The present study is likely to provide valuable data on the incidence and predictive and immunologic factors for herpes zoster in a defined community-based population of Japanese.
PMCID: PMC3798596  PMID: 22343323
herpes zoster; skin test; incidence; prospective cohort study; cell-mediated immunity
14.  Interleukin-1 Family Cytokines as Mucosal Vaccine Adjuvants for Induction of Protective Immunity against Influenza Virus▿  
Journal of Virology  2010;84(24):12703-12712.
A safe and potent adjuvant is needed for development of mucosal vaccines against etiological agents, such as influenza virus, that enter the host at mucosal surfaces. Cytokines are potential adjuvants for mucosal vaccines because they can enhance primary and memory immune responses enough to protect against some infectious agents. For this study, we tested 26 interleukin (IL) cytokines as mucosal vaccine adjuvants and compared their abilities to induce antigen (Ag)-specific immune responses against influenza virus. In mice intranasally immunized with recombinant influenza virus hemagglutinin (rHA) plus one of the IL cytokines, IL-1 family cytokines (i.e., IL-1α, IL-1β, IL-18, and IL-33) were found to increase Ag-specific immunoglobulin G (IgG) in plasma and IgA in mucosal secretions compared to those after immunization with rHA alone. In addition, high levels of both Th1- and Th2-type cytokines were observed in mice immunized with rHA plus an IL-1 family cytokine. Furthermore, mice intranasally immunized with rHA plus an IL-1 family cytokine had significant protection against a lethal influenza virus infection. Interestingly, the adjuvant effects of IL-18 and IL-33 were significantly decreased in mast cell-deficient W/Wv mice, indicating that mast cells have an important role in induction of Ag-specific mucosal immune responses induced by IL-1 family cytokines. In summary, our results demonstrate that IL-1 family cytokines are potential mucosal vaccine adjuvants and can induce Ag-specific immune responses for protection against pathogens like influenza virus.
PMCID: PMC3004317  PMID: 20881038
15.  Human herpesvirus 6 major immediate early promoter has strong activity in T cells and is useful for heterologous gene expression 
Virology Journal  2011;8:9.
Human herpesvirus-6 (HHV-6) is a beta-herpesvirus. HHV-6 infects and replicates in T cells. The HHV-6-encoded major immediate early gene (MIE) is expressed at the immediate-early infection phase. Human cytomegalovirus major immediate early promoter (CMV MIEp) is commercially available for the expression of various heterologous genes. Here we identified the HHV-6 MIE promoter (MIEp) and compared its activity with that of CMV MIEp in various cell lines.
The HHV-6 MIEp and some HHV-6 MIEp variants were amplified by PCR from HHV-6B strain HST. These fragments and CMV MIEp were subcloned into the pGL-3 luciferase reporter plasmid and subjected to luciferase reporter assay. In addition, to investigate whether the HHV-6 MIEp could be used as the promoter for expression of foreign genes in a recombinant varicella-zoster virus, we inserted HHV-6 MIEp-DsRed expression casette into the varicella-zoster virus genome.
HHV-6 MIEp showed strong activity in T cells compared with CMV MIEp, and the presence of intron 1 of the MIE gene increased its activity. The NF-κB-binding site, which lies within the R3 repeat, was critical for this activity. Moreover, the HHV-6 MIEp drove heterologous gene expression in recombinant varicella-zoster virus-infected cells.
These data suggest that HHV-6 MIEp functions more strongly than CMV MIEp in various T-cell lines.
PMCID: PMC3024959  PMID: 21219662
16.  Characterization of the Varicella-Zoster Virus ORF50 Gene, Which Encodes Glycoprotein M▿  
Journal of Virology  2010;84(7):3488-3502.
The ORF50 gene of the varicella-zoster virus (VZV) encodes glycoprotein M (gM), which is conserved among all herpesviruses and is important for the cell-to-cell spread of VZV. However, few analyses of ORF50 gene expression or its posttranscriptional and translational modifications have been published. Here we found that in VZV-infected cells, ORF50 encoded four transcripts: a full-size transcript, which was translated into the gM, and three alternatively spliced transcripts, which were not translated. Using a splicing-negative mutant virus, we showed that the alternative transcripts were nonessential for viral growth in cell culture. In addition, we found that two amino acid mutations of gM, V42P and G301M, blocked gM's maturation and transport to the trans-Golgi network, which is generally recognized as the viral assembly complex. We also found that the mutations disrupted gM's interaction with glycoprotein N (gN), revealing their interaction through a bond that is otherwise unreported for herpesviruses. Using this gM maturation-negative virus, we found that immature gM and gN were incorporated into intracellularly isolated virus particles and that mature gM was required for efficient viral growth via cell-to-cell spread but not for virion morphogenesis. The virus particles were more abundant at the abnormally enlarged perinuclear cisternae than those of the parental virus, but they were also found at the cell surface and in the culture medium. Additionally, in the gM maturation-negative mutant virus-infected melanoma cells, typical syncytium formation was rarely seen, again indicating that mature gM functions in cell-to-cell spread via enhancement of syncytium formation.
PMCID: PMC2838139  PMID: 20106918
17.  Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts 
Virology Journal  2009;6:127.
In general, enveloped viruses are highly dependent on their lipid envelope for entry into host cells. Here, we demonstrated that during the course of virus maturation, a significant proportion of human herpesvirus 6 (HHV-6) envelope proteins were selectively concentrated in the detergent-resistant glycosphingolipid- and cholesterol-rich membranes (rafts) in HHV-6-infected cells. In addition, the ganglioside GM1, which is known to partition preferentially into lipid rafts, was detected in purified virions, along with viral envelope glycoproteins, gH, gL, gB, gQ1, gQ2 and gO indicating that at least one raft component was included in the viral particle during the assembly process.
PMCID: PMC2743664  PMID: 19689819
18.  Human Herpesvirus-6 Induces MVB Formation, and Virus Egress Occurs by an Exosomal Release Pathway 
Traffic (Copenhagen, Denmark)  2008;9(10):1728-1742.
The final envelopment of most herpesviruses occurs at Golgi or post-Golgi compartments, such as the trans Golgi network (TGN); however, the final envelopment site of human herpesvirus 6 (HHV-6) is uncertain. In this study, we found novel pathways for HHV-6 assembly and release from T cells that differed, in part, from those of alphaherpesviruses. Electron microscopy showed that late in infection, HHV-6-infected cells were larger than uninfected cells and contained many newly formed multivesicular body (MVB)-like compartments that included small vesicles. These MVBs surrounded the Golgi apparatus. Mature virions were found in the MVBs and MVB fusion with plasma membrane, and the release of mature virions together with small vesicles was observed at the cell surface. Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB/late endosome marker, and HHV-6 envelope glycoproteins. The viral glycoproteins also localized to internal vesicles in the MVBs and to secreted vesicles (exosomes). Furthermore, we found virus budding at TGN-associated membranes, which expressed CD63, adaptor protein (AP-1) and TGN46, and CD63 incorporation into virions. Our findings suggest that mature HHV-6 virions are released together with internal vesicles through MVBs by the cellular exosomal pathway. This scenario has significant implications for understanding HHV-6's maturation pathway.
PMCID: PMC2613231  PMID: 18637904
budding and egress; exosome; final envelopment; HHV-6; MVB; TGN
19.  Varicella-Zoster Virus Glycoprotein M Homolog Is Glycosylated, Is Expressed on the Viral Envelope, and Functions in Virus Cell-to-Cell Spread▿  
Journal of Virology  2007;82(2):795-804.
Although envelope glycoprotein M (gM) is highly conserved among herpesviruses, the varicella-zoster virus (VZV) gM homolog has never been investigated. Here we characterized the VZV gM homolog and analyzed its function in VZV-infected cells. The VZV gM homolog was expressed on virions as a glycoprotein modified with a complex N-linked oligosaccharide and localized mainly to the Golgi apparatus and the trans-Golgi network in infected cells. To analyze its function, a gM deletion mutant was generated using the bacterial artificial chromosome system in Escherichia coli, and the virus was reconstituted in MRC-5 cells. VZV is highly cell associated, and infection proceeds mostly by cell-to-cell spread. Compared with wild-type VZV, the gM deletion mutant showed a 90% reduction in plaque size and 50% of the cell-to-cell spread in MRC-5 cells. The analysis of infected cells by electron microscopy revealed numerous aberrant vacuoles containing electron-dense materials in cells infected with the deletion mutant virus but not in those infected with wild-type virus. However, enveloped immature particles termed L particles were found at the same level on the surfaces of cells infected with either type of virus, indicating that envelopment without a capsid might not be impaired. These results showed that VZV gM is important for efficient cell-to-cell virus spread in cell culture, although it is not essential for virus growth.
PMCID: PMC2224567  PMID: 17977964
20.  Varicella-zoster virus ORF 58 gene is dispensable for viral replication in cell culture 
Virology Journal  2008;5:54.
Open reading frame 58 (ORF58) of varicella-zoster virus (VZV) lies at the 3'end of the Unique long (UL) region and its functional is unknown. In order to clarify whether ORF58 is essential for the growth of VZV, we constructed a deletion mutant of ORF58 (pOka-BACΔ58) from the Oka parental genome cloned into a bacterial artificial chromosome (pOka-BAC).
The ORF58-deleted virus (rpOkaΔ58) was reconstituted from the pOka-BACΔ58 genome in MRC-5 cells, indicating that the ORF58 gene is non-essential for virus growth. Comparison of the growth rate of rpOkaΔ58 and recombinant wild-type virus by assessing plaque sizes revealed no significant differences between them both in MRC-5 cells and malignant melanoma cells.
This study shows that the ORF58 gene is dispensable for viral replication and does not affect the virus' ability to form plaques in vitro.
PMCID: PMC2412858  PMID: 18445300
21.  Deletion in Open Reading Frame 49 of Varicella-Zoster Virus Reduces Virus Growth in Human Malignant Melanoma Cells but Not in Human Embryonic Fibroblasts▿  
Journal of Virology  2007;81(22):12654-12665.
The ORF49 gene product (ORF49p) of the varicella-zoster virus (VZV) is likely a myristylated tegument protein, and its homologs are conserved across the herpesvirus subfamilies. The UL11 gene of herpes simplex virus type 1 and of pseudorabies virus and the UL99 gene of human cytomegalovirus are the homologs of ORF49 and have been well characterized by using mutant viruses; however, little research on the VZV ORF49 gene has been reported. Here we report on VZV ORF49p expression, subcellular localization, and effect on viral spread in vitro. ORF49p was expressed during the late phase of infection and located in the juxtanuclear region of the cytoplasm, where it colocalized mainly with the trans-Golgi network-associated protein. ORF49p was incorporated into virions and showed a molecular mass of 13 kDa in VZV-infected cells and virions. To elucidate the role of the ORF49 gene, we constructed a mutant virus that lacked a functional ORF49. No differences in plaque size or cell-cell spread were observed in human embryonic fibroblast cells, MRC-5 cells, infected with the wild-type or the mutant virus. However, the mutant virus showed diminished cell-cell infection in a human malignant melanoma cell line, MeWo cells. Therefore, VZV ORF49p is important for virus growth in MeWo cells, but not in MRC-5 cells. VZV may use different mechanisms for virus growth in MeWo and MRC-5 cells. If so, understanding the role of ORF49p should help elucidate how VZV accomplishes cell-cell infections in different cell types.
PMCID: PMC2169031  PMID: 17855513
22.  Human Herpesvirus 6 Open Reading Frame U14 Protein and Cellular p53 Interact with Each Other and Are Contained in the Virion 
Journal of Virology  2005;79(20):13037-13046.
A mass spectroscopic analysis of proteins from human herpesvirus 6 (HHV-6)-infected cells showed that the HHV-6 U14 protein coimmunoprecipitated with the tumor suppressor p53. The binding of U14 to p53 was verified by coimmunoprecipitation experiments in both Molt-3 cells infected with HHV-6 and 293 cells cotransfected with U14 and p53 expression vectors. Indirect immunofluorescence assays (IFAs) showed that by 18 h postinfection (hpi) U14 localized to the dot-like structures observed in both the nucleus and cytoplasm where p53 was partly accumulated. Despite Northern blotting evidence that U14 follows late kinetics, the U14 protein was detected immediately after infection (at 3 hpi) by IFA. In addition, by Western blotting, U14 was detected at 0 hpi or in the presence of cycloheximide which completely abolished the expression of IE1 protein. In addition to U14, p53 was detected at 0 hpi although it was not detected in mock-infected cells. Furthermore, both U14 and p53 were clearly detected in the viral particles by Western blotting and immunoelectron microscopy, supporting the idea that U14 and p53 are incorporated into virions. Our study provides the first evidence of the incorporation of cellular p53 into viral particles and suggests that p53 may play an important role in viral infection.
PMCID: PMC1235810  PMID: 16189006
23.  Intracellular Processing of Human Herpesvirus 6 Glycoproteins Q1 and Q2 into Tetrameric Complexes Expressed on the Viral Envelope 
Journal of Virology  2004;78(15):7969-7983.
Human herpesvirus 6 (HHV-6) glycoproteins H and L (gH and gL, respectively) and the 80-kDa form of glycoprotein Q (gQ-80K) form a heterotrimeric complex that is found on the viral envelope and that is a viral ligand for human CD46. Besides gQ-80K, the gQ gene encodes an additional product whose mature molecular mass is 37 kDa (gQ-37K) and which is derived from a different transcript. Therefore, we designated gQ-80K as gQ1 and gQ-37K as gQ2. We show here that gQ2 also interacts with the gH-gL-gQ1 complex in HHV-6-infected cells and in virions. To examine how these components interact in HHV-6-infected cells, we performed pulse-chase studies. The results demonstrated that gQ2-34K, which is endo-β-N-acetylglucosaminidase H sensitive and which is the precursor form of gQ2-37K, associates with gQ1-74K, which is the precursor form of gQ1-80K, within 30 min of the pulse period. After a 1-h chase, these precursor forms had associated with the gH-gL dimer. Interestingly, an anti-gH monoclonal antibody coimmunoprecipitated mainly gQ1-80K and gQ2-37K, with little gQ1-74K or gQ2-34K. These results indicate that although gQ2-34K and gQ1-74K interact in the endoplasmic reticulum, the gH-gL-gQ1-80K-gQ2-37K heterotetrameric complex arises in the post-endoplasmic reticulum compartment. The mature complex is subsequently incorporated into viral particles.
PMCID: PMC446105  PMID: 15254169
24.  Discovery of a Second Form of Tripartite Complex Containing gH-gL of Human Herpesvirus 6 and Observations on CD46 
Journal of Virology  2004;78(9):4609-4616.
The human herpesvirus 6 (HHV-6) glycoprotein H (gH)-glycoprotein L (gL) complex associates with glycoprotein Q (gQ) (Y. Mori, P. Akkapaiboon, X. Yang, and K. Yamanishi, J. Virol. 77:2452-2458, 2003), and the gH-gL-gQ complex interacts with human CD46 (Y. Mori, X. Yang, P. Akkapaiboon, T. Okuno, and K. Yamanishi, J. Virol. 77:4992-4999, 2003). Here, we show that the HHV-6 U47 gene, which is a positional homolog of the human cytomegalovirus glycoprotein O (gO) gene, encodes a third component of the HHV-6 gH-gL-containing envelope complex. A monoclonal antibody (MAb) against the amino terminus of HHV-6 gO reacted in immunoblots with protein species migrating at 120 to 130 kDa and 74 to 80 kDa in lysates of HHV-6-infected cells and with a 74- to 80-kDa protein species in purified virions. The 80-kDa form of gO was coimmunoprecipitated with an anti-gH MAb, but an anti-gQ MAb, which coimmunoprecipitated gH, did not coprecipitate gO. Furthermore, the gH-gL-gO complex did not bind to human CD46, indicating that the complex was not a ligand for CD46. These findings suggested that the viral envelope contains at least two kinds of tripartite complexes, gH-gL-gQ and gH-gL-gO, and that the gH-gL-gO complex may play a role different from that of gH-gL-gQ during viral infection. This is the first report of two kinds of gH-gL complexes on the viral envelope in a member of the herpesvirus family.
PMCID: PMC387711  PMID: 15078943
25.  Human Herpesvirus 6 Variant A Glycoprotein H-Glycoprotein L-Glycoprotein Q Complex Associates with Human CD46 
Journal of Virology  2003;77(8):4992-4999.
Human CD46 is a cellular receptor for human herpesvirus 6 (HHV-6). Virus entry into host cells requires a glycoprotein H (gH)-glycoprotein L (gL) complex. We show that the CD46 ectodomain blocked HHV-6 infection and bound a complex of gH-gL and the 80-kDa U100 gene product, designated glycoprotein Q, indicating that the complex is a viral ligand for CD46.
PMCID: PMC152135  PMID: 12663806

Results 1-25 (33)