PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Association Study of Common Genetic Variants and HIV-1 Acquisition in 6,300 Infected Cases and 7,200 Controls 
PLoS Pathogens  2013;9(7):e1003515.
Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10−11). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.
Author Summary
Comparing the frequency differences between common DNA variants in disease-affected cases and in unaffected controls has been successful in uncovering the genetic component of multiple diseases. This approach is most effective when large samples of cases and controls are available. Here we combine information from multiple studies of HIV infected patients, including more than 6,300 HIV+ individuals, with data from 7,200 general population samples of European ancestry to test nearly 8 million common DNA variants for an impact on HIV acquisition. With this large sample we did not observe any single common genetic variant that significantly associated with HIV acquisition. We further tested 22 variants previously identified by smaller studies as influencing HIV acquisition. With the exception of a deletion polymorphism in the CCR5 gene (CCR5Δ32) we found no convincing evidence to support these previous associations. Taken together these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.
doi:10.1371/journal.ppat.1003515
PMCID: PMC3723635  PMID: 23935489
2.  The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Humans 
Science (New York, N.Y.)  2011;334(6052):89-94.
Whole genome comparisons identified introgression from archaic to modern humans. Our analysis of highly polymorphic HLA class I, vital immune system components subject to strong balancing selection, shows how modern humans acquired the HLA-B*73 allele in west Asia through admixture with archaic humans called Denisovans, a likely sister group to the Neandertals. Virtual genotyping of Denisovan and Neandertal genomes identified archaic HLA haplotypes carrying functionally distinctive alleles that have introgressed into modern Eurasian and Oceanian populations. These alleles, of which several encode unique or strong ligands for natural killer cell receptors, now represent more than half the HLA alleles of modern Eurasians and also appear to have been later introduced into Africans. Thus, adaptive introgression of archaic alleles has significantly shaped modern human immune systems.
doi:10.1126/science.1209202
PMCID: PMC3677943  PMID: 21868630
3.  A Genetic Polymorphism of FREM1 Is Associated with Resistance against HIV Infection in the Pumwani Sex Worker Cohort 
Journal of Virology  2012;86(21):11899-11905.
A subgroup of women enrolled in the Pumwani sex worker cohort remain seronegative and PCR negative for human immunodeficiency virus type 1 despite repeated exposure through high-risk sex work. Studies have shown that polymorphisms of genes involved in antigen presentation and viral restriction factors are associated with resistance to HIV infection. To discover other possible genetic factors underlying this HIV-resistant phenotype, we conducted an exploratory nonbiased, low-resolution, genome-wide single-nucleotide polymorphism (SNP) analysis comparing 60 HIV-resistant women to 48 HIV-infected controls. The SNP minor allele rs1552896, in an intron of FREM1, was significantly associated with the resistant phenotype (P = 1.68 × 10−5; adjusted P = 2.37 × 10−4; odds ratio [OR], 9.51; 95% confidence interval [CI], 2.82 to 32.05). We expanded the sample size by genotyping rs1552896 in the Pumwani cohort and comparing 114 HIV-resistant women to 609 HIV-infected controls and confirmed the association (P = 1.7 × 10−4; OR, 2.67; 95% CI, 1.47 to 4.84). To validate the association in a second cohort, we genotyped 783 women enrolled in a mother-child health study and observed the minor allele of rs1552896 enriched in HIV-uninfected women (n = 488) compared to HIV-infected enrollees (n = 295) (P = 0.036; OR, 1.69; 95% CI, 0.98 to 2.93). Quantitative reverse transcription-PCR showed that FREM1 mRNA was highly expressed in tissues relevant for HIV-1 infection, and immunohistochemical analysis revealed that FREM1 protein is expressed in the ectocervical mucosa of HIV-resistant women. The significant association of rs1552896 with an HIV-resistant phenotype, together with the expression profile of FREM1 in tissues relevant to HIV infection, suggests that FREM1 is a potentially novel candidate gene for resistance to HIV infection.
doi:10.1128/JVI.01499-12
PMCID: PMC3486297  PMID: 22915813
4.  HIV-1 Clade D Is Associated with Increased Rates of CD4 Decline in a Kenyan Cohort 
PLoS ONE  2012;7(11):e49797.
HIV-1 is grouped phylogenetically into clades, which may impact rates of HIV-1 disease progression. Clade D infection in particular has been shown to be more pathogenic. Here we confirm in a Nairobi-based prospective female sex worker cohort (1985–2004) that Clade D (n = 54) is associated with a more rapid CD4 decline than clade A1 (n = 150, 20.6% vs 13.4% decline per year, 1.53-fold increase, p = 0.015). This was independent of “protective” HLA and country of origin (p = 0.053), which in turn were also independent predictors of the rate of CD4 decline (p = 0.026 and 0.005, respectively). These data confirm that clade D is more pathogenic than clade A1. The precise reason for this difference is currently unclear, and requires further study. This is first study to demonstrate difference in HIV-1 disease progression between clades while controlling for protective HLA alleles.
doi:10.1371/journal.pone.0049797
PMCID: PMC3504142  PMID: 23185441
5.  Characterization of HIV-Specific CD4+ T Cell Responses against Peptides Selected with Broad Population and Pathogen Coverage 
PLoS ONE  2012;7(7):e39874.
CD4+ T cells orchestrate immunity against viral infections, but their importance in HIV infection remains controversial. Nevertheless, comprehensive studies have associated increase in breadth and functional characteristics of HIV-specific CD4+ T cells with decreased viral load. A major challenge for the identification of HIV-specific CD4+ T cells targeting broadly reactive epitopes in populations with diverse ethnic background stems from the vast genomic variation of HIV and the diversity of the host cellular immune system. Here, we describe a novel epitope selection strategy, PopCover, that aims to resolve this challenge, and identify a set of potential HLA class II-restricted HIV epitopes that in concert will provide optimal viral and host coverage. Using this selection strategy, we identified 64 putative epitopes (peptides) located in the Gag, Nef, Env, Pol and Tat protein regions of HIV. In total, 73% of the predicted peptides were found to induce HIV-specific CD4+ T cell responses. The Gag and Nef peptides induced most responses. The vast majority of the peptides (93%) had predicted restriction to the patient’s HLA alleles. Interestingly, the viral load in viremic patients was inversely correlated to the number of targeted Gag peptides. In addition, the predicted Gag peptides were found to induce broader polyfunctional CD4+ T cell responses compared to the commonly used Gag-p55 peptide pool. These results demonstrate the power of the PopCover method for the identification of broadly recognized HLA class II-restricted epitopes. All together, selection strategies, such as PopCover, might with success be used for the evaluation of antigen-specific CD4+ T cell responses and design of future vaccines.
doi:10.1371/journal.pone.0039874
PMCID: PMC3390319  PMID: 22792193
6.  For Protection from HIV-1 Infection, More Might Not Be Better: a Systematic Analysis of HIV Gag Epitopes of Two Alleles Associated with Different Outcomes of HIV-1 Infection 
Journal of Virology  2012;86(2):1166-1180.
A subset of women in the Pumwani Sex Worker Cohort, established in 1985 in Nairobi, Kenya, remains uninfected despite repeated high-risk exposure (HIV-exposed, seronegative [HESN]) through active sex work. This HESN phenotype is associated with several alleles of human leukocyte antigens (HLAs) and specific CD8+ and CD4+ T cell responses to HIV-1. The associations of HLA alleles with differential HIV-1 infection are most likely due to their different abilities to present antigen and the different immune responses they induce. The characteristics of epitopes of HLA alleles associated with different outcomes of HIV-1 infection might therefore point to a vital clue for developing an effective vaccine. In this study, we systematically analyzed HIV-1 clade A and D Gag CD8+ T cell epitopes of two HLA class I alleles associated with different outcomes of HIV-1 infection. Binding affinity and off-rates of the identified epitopes were determined. Gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays with patient peripheral blood mononuclear cells (PBMCs) validated the epitopes. Epitope-specific CD8+ T cells were further phenotyped for memory markers with tetramer staining. Our study showed that the protective allele A*01:01 recognizes only three Gag epitopes. By contrast, B*07:02, the allele associated with susceptibility, binds 30 epitope variants. These two alleles differ most importantly in the spectrum of Gag epitopes they can present and not in affinity, off-rates, the location of the epitopes, or epitope-specific Tem/Tcm frequencies. The binding of more epitopes and strong IFN-gamma ELISpot responses are associated with susceptibility to HIV-1 infection, while more focused antigen recognition of multiple subtypes is protective. Rational vaccine design should take these observations into account.
doi:10.1128/JVI.05721-11
PMCID: PMC3255815  PMID: 22072744
7.  Interplay between HIV-1 and Host Genetic Variation: A Snapshot into Its Impact on AIDS and Therapy Response 
Advances in Virology  2012;2012:508967.
As of February 2012, 50 circulating recombinant forms (CRFs) have been reported for HIV-1 while one CRF for HIV-2. Also according to HIV sequence compendium 2011, the HIV sequence database is replete with 414,398 sequences. The fact that there are CRFs, which are an amalgamation of sequences derived from six or more subtypes (CRF27_cpx (cpx refers to complex) is a mosaic with sequences from 6 different subtypes besides an unclassified fragment), serves as a testimony to the continual divergent evolution of the virus with its approximate 1% per year rate of evolution, and this phenomena per se poses tremendous challenge for vaccine development against HIV/AIDS, a devastating disease that has killed 1.8 million patients in 2010. Here, we explore the interaction between HIV-1 and host genetic variation in the context of HIV/AIDS and antiretroviral therapy response.
doi:10.1155/2012/508967
PMCID: PMC3361994  PMID: 22666249
8.  Microarray Analysis of HIV Resistant Female Sex Workers Reveal a Gene Expression Signature Pattern Reminiscent of a Lowered Immune Activation State 
PLoS ONE  2012;7(1):e30048.
To identify novel biomarkers for HIV-1 resistance, including pathways that may be critical in anti-HIV-1 vaccine design, we carried out a gene expression analysis on blood samples obtained from HIV-1 highly exposed seronegatives (HESN) from a commercial sex worker cohort in Nairobi and compared their profiles to HIV-1 negative controls. Whole blood samples were collected from 43 HIV-1 resistant sex workers and a similar number of controls. Total RNA was extracted and hybridized to the Affymetrix HUG 133 Plus 2.0 micro arrays (Affymetrix, Santa Clara CA). Output data was analysed through ArrayAssist software (Agilent, San Jose CA). More than 2,274 probe sets were differentially expressed in the HESN as compared to the control group (fold change ≥1.3; p value ≤0.0001, FDR <0.05). Unsupervised hierarchical clustering of the differentially expressed genes readily distinguished HESNs from controls. Pathway analysis through the KEGG signaling database revealed a majority of the impacted pathways (13 of 15, 87%) had genes that were significantly down regulated. The most down expressed pathways were glycolysis/gluconeogenesis, pentose phosphate, phosphatidyl inositol, natural killer cell cytotoxicity and T-cell receptor signaling. Ribosomal protein synthesis and tight junction genes were up regulated. We infer that the hallmark of HIV-1 resistance is down regulation of genes in key signaling pathways that HIV-1 depends on for infection.
doi:10.1371/journal.pone.0030048
PMCID: PMC3266890  PMID: 22291902
9.  Bis[(1S,1′S)-1,1′-(4-amino-4H-1,2,4-triazole-3,5-di­yl)diethanol-κN 1]bis­(nitrato-κO)zinc 
In the title homochiral mononuclear compound, [Zn(NO3)2(C6H12N4O2)2], the ZnII atom is located on a twofold rotation axis and coordinated by two N atoms from two ligands and two O atoms from two NO3 − anions, adopting a distorted tetra­hedral coordination geometry. The compound is enanti­omerically pure and corresponds to the S diastereoisomer, with the optical activity originating from the chiral ligand. In the crystal, mol­ecules are connected into three-dimensional supra­molecular networks through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.
doi:10.1107/S1600536812001754
PMCID: PMC3274914  PMID: 22346861
10.  The role of G protein gene GNB3 C825T Polymorphism in HIV-1 acquisition, progression and immune activation 
Retrovirology  2012;9:1.
Background
The GNB3 C825T polymorphism is associated with increased G protein-mediated signal transduction, SDF-1α-mediated lymphocyte chemotaxis, accelerated HIV-1 progression, and altered responses to antiretroviral therapy among Caucasian subjects. The GNB3 825T allele is highly prevalent in African populations, and as such any impact on HIV-1 acquisition or progression rates could have a dramatic impact. This study examines the association of the 825T polymorphism with HIV-1 acquisition, disease progression and immune activation in two African cohorts. GNB3 825 genotyping was performed for enrolees in both a commercial sex worker cohort and a perinatal HIV transmission (PHT) cohort in Nairobi, Kenya. Ex vivo immune activation was quantified by flow cytometry, and plasma chemokine levels were assessed by cytokine bead array.
Results
GNB3 genotype was not associated with sexual or vertical HIV-1 acquisition within these cohorts. Within the Pumwani cohort, GNB3 genotype did not affect HIV-1 disease progression among seroconverters or among HIV-1-positive individuals after adjustment for baseline CD4 count. Maternal CD4 decline and viral load increase in the PHT cohort did not differ between genotypes. Multi-parametric flow cytometry assessment of T cell activation (CD69, HLA-DR, CD38) and Treg frequency (CD25+FOXP3+) found no differences between genotype groups. Plasma SDF-1α, MIP-1β and TRAIL levels quantified by cytokine bead array were also similar between groups.
Conclusions
In contrast to previous reports, we were unable to provide evidence to suggest that the GNB3 C825T polymorphism affects HIV-1 acquisition or disease progression within African populations. Ex vivo immune activation and plasma chemokine levels were similarly unaffected by GNB3 genotype in both HIV-1-negative and HIV-1-positive individuals. The paucity of studies investigating the impact of GNB3 polymorphism among African populations and the lack of mechanistic studies make it difficult to assess the true biological significance of this polymorphism in HIV-1 infection.
doi:10.1186/1742-4690-9-1
PMCID: PMC3278356  PMID: 22214232
GNB3; HIV progression; G protein; HIV acquisition; Immune Activation
11.  Enrichment of Variations in KIR3DL1/S1 and KIR2DL2/L3 among H1N1/09 ICU Patients: An Exploratory Study 
PLoS ONE  2011;6(12):e29200.
Background
Infection by the pandemic influenza A (H1N1/09) virus resulted in significant pathology among specific ethnic groups worldwide. Natural Killer (NK) cells are important in early innate immune responses to viral infections. Activation of NK cells, in part, depend on killer-cell immunoglobulin-like receptors (KIR) and HLA class I ligand interactions. To study factors involved in NK cell dysfunction in overactive immune responses to H1N1 infection, KIR3DL1/S1 and KIR2DL2/L3 allotypes and cognate HLA ligands of H1N1/09 intensive-care unit (ICU) patients were determined.
Methodology and Findings
KIR3DL1/S1, KIR2DL2/L3, and HLA -B and -C of 51 H1N1/09 ICU patients and 105 H1N1-negative subjects (St. Theresa Point, Manitoba) were characterized. We detected an increase of 3DL1 ligand-negative pairs (3DL1/S1+ Bw6+ Bw4−), and a lack of 2DL1 HLA-C2 ligands, among ICU patients. They were also significantly enriched for 2DL2/L3 ligand-positive pairs (P<0.001, Pc<0.001; Odds Ratio:6.3158, CI95%:2.481–16.078). Relative to St. Theresa aboriginals (STh) and Venezuelan Amerindians (VA), allotypes enriched among aboriginal ICU patients (Ab) were: 2DL3 (Ab>VA, P = 0.024, Pc = 0.047; Odds Ratio:2.563, CI95%:1.109–5.923), 3DL1*00101 (Ab>VA, P<0.001, Pc<0.001), 3DL1*01502 (Ab>STh, P = 0.034, Pc = 0.268), and 3DL1*029 (Ab>STh, P  = 0.039, Pc = 0.301). Aboriginal patients ligand-positive for 3DL1/S1 and 2DL1 had the lowest probabilities of death (Rd) (Rd = 28%), compared to patients that were 3DL1/S1 ligand-negative (Rd = 52%) or carried 3DL1*029 (Rd = 52%). Relative to Caucasoids (CA), two allotypes were enriched among non-aboriginal ICU patients (NAb): 3DL1*00401 (NAb>CA, P<0.001, Pc<0.001) and 3DL1*01502 (CA
Conclusions
Specific KIR3DL1/S1 allotypes, 3DL1/S1 and 2DL1 ligand-negative pairs, and 2DL2/L3 ligand-positive pairs were enriched among ICU patients. This suggests a possible association with NK cell dysfunction in patients with overactive immune responses to H1N1/09, leading to severe disease.
doi:10.1371/journal.pone.0029200
PMCID: PMC3247251  PMID: 22216211
PLoS ONE  2011;6(10):e26745.
Background
Pyrosequencing technology has the potential to rapidly sequence HIV-1 viral quasispecies without requiring the traditional approach of cloning. In this study, we investigated the utility of ultra-deep pyrosequencing to characterize genetic diversity of the HIV-1 gag quasispecies and assessed the possible contribution of pyrosequencing technology in studying HIV-1 biology and evolution.
Methodology/Principal Findings
HIV-1 gag gene was amplified from 96 patients using nested PCR. The PCR products were cloned and sequenced using capillary based Sanger fluorescent dideoxy termination sequencing. The same PCR products were also directly sequenced using the 454 pyrosequencing technology. The two sequencing methods were evaluated for their ability to characterize quasispecies variation, and to reveal sites under host immune pressure for their putative functional significance. A total of 14,034 variations were identified by 454 pyrosequencing versus 3,632 variations by Sanger clone-based (SCB) sequencing. 11,050 of these variations were detected only by pyrosequencing. These undetected variations were located in the HIV-1 Gag region which is known to contain putative cytotoxic T lymphocyte (CTL) and neutralizing antibody epitopes, and sites related to virus assembly and packaging. Analysis of the positively selected sites derived by the two sequencing methods identified several differences. All of them were located within the CTL epitope regions.
Conclusions/Significance
Ultra-deep pyrosequencing has proven to be a powerful tool for characterization of HIV-1 genetic diversity with enhanced sensitivity, efficiency, and accuracy. It also improved reliability of downstream evolutionary and functional analysis of HIV-1 quasispecies.
doi:10.1371/journal.pone.0026745
PMCID: PMC3198814  PMID: 22039546
PLoS ONE  2011;6(8):e22948.
Background
West Nile virus (WNV) infection is asymptomatic in most individuals, with a minority developing symptoms ranging from WNV fever to serious neuroinvasive disease. This study investigated the impact of host HLA on the outcome of WNV disease.
Methods
A cohort of 210 non-Hispanic mostly white WNV+ subjects from Canada and the U.S. were typed for HLA-A, B, C, DP, DQ, and DR. The study subjects were divided into three WNV infection outcome groups: asymptomatic (AS), symptomatic (S), and neuroinvasive disease (ND). Allele frequency distribution was compared pair-wise between the AS, S, and ND groups using χ2 and Fisher's exact tests and P values were corrected for multiple comparisons (Pc). Allele frequencies were compared between the groups and the North American population (NA) used as a control group. Logistic regression analysis was used to evaluate the potential synergistic effect of age and HLA allele phenotype on disease outcome.
Results
The alleles HLA-A*68, C*08 and DQB*05 were more frequently associated with severe outcomes (ND vs. AS, PA*68 = 0.013/Pc = 0.26, PC*08 = 0.0075/Pc = 0.064, and PDQB1*05 = 0.029/Pc = 0.68), However the apparent DQB1*05 association was driven by age. The alleles HLA-B*40 and C*03 were more frequently associated with asymptomatic outcome (AS vs. S, PB*40 = 0.021/Pc = 0.58 and AS vs. ND PC*03 = 0.039/Pc = 0.64) and their frequencies were lower within WNV+ subjects with neuroinvasive disease than within the North American population (NA vs. S, PB*40 = 0.029 and NA vs. ND, PC*03 = 0.032).
Conclusions
Host HLA may be associated with the outcome of WNV disease; HLA-A*68 and C*08 might function as “susceptible” alleles, whereas HLA-B*40 and C*03 might function as “protective” alleles.
doi:10.1371/journal.pone.0022948
PMCID: PMC3148246  PMID: 21829673
AIDS (London, England)  2010;24(12):1813-1821.
Objective
The innate immune component TRIM5α has the ability to restrict retrovirus infection in a species-specific manner. TRIM5α of some primate species restricts infection by HIV-1, while huTRIM5α lacks this specificity. Previous studies have suggested that certain polymorphisms in huTRIM5 may enhance or impair the proteins affinity for HIV-1. This study investigates the role of TRIM5 polymorphisms in resistance/susceptibility to HIV-1 within the Pumwani sex worker cohort in Nairobi, Kenya. A group of women within this cohort remain HIV-1 seronegative and PCR negative despite repeated exposure to HIV-1 through active sex work.
Design
A 1 kb fragment of Trim5alpha gene, including exon 2, from 1032 women enrolled in the Pumwani sex worker cohort was amplified and sequenced. SNPs and haplotypes were compared between HIV-1 positive and resistant women.
Methods
The TRIM5 exon 2 genomic fragment was amplified, sequenced and genotyped. Pypop32-0.6.0 was used to determine SNP and haplotype frequencies and statistical analysis was carried out using SPSS-13.0 for windows.
Results
A TRIM5 SNP (rs10838525) resulting in the amino acid change from Arginine to Glutamine at codon 136, was enriched in HIV-1 resistant individuals (p=1.104E-05; OR:2.991; CI95%:1.806–4.953) and women with 136Q were less likely to seroconvert (p=0.002; Log Rank: 12.799). Wild type TRIM5α exon 2 was associated with susceptibility to HIV-1 (p=0.006; OR:0.279; 95%CI:0.105–0.740) and rapid seroconversion (p=0.001; Log Rank: 14.475).
Conclusions
Our findings suggest that a shift from arginine to glutamine at codon 136 in the coiled-coil region of TRIM5α confers protection against HIV-1 in the Pumwani sex worker cohort.
doi:10.1097/QAD.0b013e32833b5256
PMCID: PMC2921035  PMID: 20588169
TRIM5α; Single nucleotide polymorphism; HIV-1; Sex Workers; Taxonomy-based Sequence Analysis; Disease Association; Disease Resistance
Journal of immunological methods  2009;352(1-2):118-125.
Identification of CTL epitopes correlated to immune protection is important for the development of vaccines that enhance T cell-mediated immune responses. The correlation of positively selected amino acids (PS) of HIV-1 with host HLA alleles can identify regions containing potential T cell epitopes. However, the specific epitopes have to be identified and characterized using overlapping peptides through T cell functional assays. In this study we used a new approach to identify and characterize potential epitopes in the gag region containing PS mutations that significantly correlated with HLA-A*0301. The iTopia Epitope Discovery System was used to rapidly screen a panel of peptides overlapping the regions containing PS mutations and the peptides identified were assessed for relative affinity and complex stability. The potential epitopes were then validated by interferon gamma (IFN-γ) ELISpot assays with patient PBMCs. Using this approach we identified/confirmed the predicted HLA-A*0301 epitopes in two regions of gag containing PS mutations V7I and K403R, one previously reported and the other novel. Five of the seven peptides that bound to A*0301 contained the K403R mutation and corresponded to the documented LARNCRAPRK-A3 supertype epitope. Two epitope variants, RASVLSGGK and RASILSGGK containing the V7I mutation, were identified using the iTopia Epitope Discovery System, however only the consensus variant (RAK9C) was confirmed using the ELISpot assay and it represents a novel A*0301 epitope.
doi:10.1016/j.jim.2009.11.002
PMCID: PMC2836169  PMID: 19903485
HIV-1; T-cell Epitopes; iTopia Epitope Discovery System; Gag
Virology Journal  2010;7:343.
Background
Design of effective vaccines against the human immunodeficiency virus (HIV-1) continues to present formidable challenges. However, individuals who are exposed HIV-1 but do not get infected may reveal correlates of protection that may inform on effective vaccine design. A preliminary gene expression analysis of HIV resistant female sex workers (HIV-R) suggested a high expression CD26/DPPIV gene. Previous studies have indicated an anti-HIV effect of high CD26/DPPIV expressing cells in vitro. Similarly, high CD26/DPPIV protein levels in vivo have been shown to be a risk factor for type 2 diabetes. We carried out a study to confirm if the high CD26/DPPIV gene expression among the HIV-R were concordant with high blood protein levels and its correlation with clinical type 2 diabetes and other perturbations in the insulin signaling pathway.
Results
A quantitative CD26/DPPIV plasma analysis from 100 HIV-R, 100 HIV infected (HIV +) and 100 HIV negative controls (HIV Neg) showed a significantly elevated CD26/DPPIV concentration among the HIV-R group (mean 1315 ng/ml) than the HIV Neg (910 ng/ml) and HIV + (870 ng/ml, p < 0.001). Similarly a FACs analysis of cell associated DPPIV (CD26) revealed a higher CD26/DPPIV expression on CD4+ T-cells derived from HIV-R than from the HIV+ (90.30% vs 80.90 p = 0.002) and HIV Neg controls (90.30% vs 82.30 p < 0.001) respectively. A further comparison of the mean fluorescent intensity (MFI) of CD26/DPPIV expression showed a higher DPP4 MFI on HIV-R CD4+ T cells (median 118 vs 91 for HIV-Neg, p = 0.0003). An evaluation for hyperglycemia, did not confirm Type 2 diabetes but an impaired fasting glucose condition (5.775 mmol/L). A follow-up quantitative PCR analysis of the insulin signaling pathway genes showed a down expression of NFκB, a central mediator of the immune response and activator of HIV-1 transcription.
Conclusion
HIV resistant sex workers have a high expression of CD26/DPPIV in tandem with lowered immune activation markers. This may suggest a novel role for CD26/DPPIV in protection against HIV infection in vivo.
doi:10.1186/1743-422X-7-343
PMCID: PMC3009705  PMID: 21108831
Journal of Virology  2009;83(23):12636-12642.
HLA-B*57-mediated selection pressure leads to a typical escape pathway in human immunodeficiency virus type 1 (HIV-1) CD8 epitopes such as TW10. Whether this T242N pathway is shared by all clades remains unknown. We therefore assessed the nature of HLA-B*57 selection in a large, observational Kenyan cohort where clades A1 and D predominate. While T242N was ubiquitous in clade D HLA-B*57+ subjects, this mutation was rare (15%) in clade A1. Instead, P243T and I247L were selected by clade A1-infected HLA-B*57 subjects but not by HLA-B*5801+ subjects. Our data suggest that clade A1 consensus proline at Gag residue 243 might represent an inherent block to T242N escape in clade A1. We confirmed immunologically that P243T and I247L likely represent escape mutations. HLA-B*57 evolution also differed between clades in the KF11 and IW9 epitopes. A better understanding of clade-specific evolution is important for the development of HIV vaccines in regions with multiple clades.
doi:10.1128/JVI.01236-09
PMCID: PMC2786721  PMID: 19759140
AIDS (London, England)  2009;27(7):771-777.
Objectives
The p1 region of HIV-1 gag contains the frameshift stem-loop, gag–pol transframe and a protease cleavage site that are crucial for viral assembly, replication and infectivity. Identifying and characterizing CD8+ epitopes that are under host immune selection in this region will help in designing effective vaccines for HIV-1.
Design
An approach combining bioinformatical analysis and interferon gamma enzyme-linked immunosorbent spot (ELISPOT) assays is used to identify and characterize the epitopes. Potential human leukocyte antigen (HLA)-restricted epitopes were identified by correlating the positively selected mutations with host HLA alleles.
Methods
ELISPOT analysis with overlapping peptides was used to confirm and characterize the epitopes.
Results
Four positively selected residues were significantly associated with HLA class I alleles, including HLA B*1302 (K4R, P=0.0008 and I5L, P=0.0108), A*7401 (S9N, P=0.0002) and A*30 genotypes (P7S, P=0.009), suggesting epitopes restricted by these alleles are present in this region. ELISPOT analysis with patient peripheral blood mononuclear cells identified 7 novel epitopes restricted by the 3 alleles. Two types of epitopes were observed in this region based on the ELISPOT responses, Type I: the positively selected variation does not affect CD8+ T-cell responses; and Type II: the CD8+ T-cell responses are determined by the epitope variants.
Conclusion
We identified and characterized seven novel CD8+ epitopes in the p1 spacer protein region. Classifying the effects of positively selected variants on CD8+ T-cell responses will help in designing effective vaccines for HIV-1.
doi:10.1097/QAD.0b013e32832995e0
PMCID: PMC2734095  PMID: 19287301
epitope; Gag; HIV-1; human leukocyte antigens; p1
AIDS (London, England)  2009;23(1):125-130.
Background
HIV prevalence has recently declined in several African countries, and prior to this the risk of HIV acquisition per unprotected sex contact also declined in Kenyan sex workers. We hypothesized that heterogeneity in HIV host susceptibility might underpin both of these observations.
Methods
A compartmental mathematical model was used to explore the potential impact of heterogeneity in susceptibility to HIV infection on epidemic behavior, in the absence of other causative mechanisms.
Results
Studies indicated that a substantial heterogeneity in susceptibility to HIV infection,, may lead to an epidemic that peaks and then declines due to a depletion of the most susceptible individuals, even without changes in sexual behavior. This effect was most notable in high-risk groups such as female sex workers, and was consistent with empirical data.
Discussion
Declines in HIV prevalence may have other causes in addition to behavior change, including heterogeneity in host HIV susceptibility. There is a need to further study this heterogeneity and its correlates, particularly as it confounds the ability to attribute HIV epidemic shifts to specific interventions, including behavior change.
doi:10.1097/QAD.0b013e3283177f20
PMCID: PMC2764323  PMID: 19050394
Modeling; epidemiology; heterogeneity in host susceptibility; HIV transmission
Human immunology  2008;69(12):885-886.
We report here a novel DPA1 allele, DPA1*010602, which was identified from an East African population during sequence-based HLA-DPA1 typing. Through cloning and sequencing multiple clones we confirmed that the new allele is identical to DPA1*010301 at exon 2 except for 2 nucleotide substitutions (ATG to CAG) at codon 31. The substitutions changed the amino acid at codon 31 from Methionine (Met) to Glutamine (Gln). The WHO nomenclature committee has named this new allele, DPA1*010602.
doi:10.1016/j.humimm.2008.09.001
PMCID: PMC2628164  PMID: 18838095
DPA1*010602; DPA1; TBSA
AIDS (London, England)  2008;22(15):2038-2042.
Summary
HLA-DP antigens present peptides to CD4+ T cells and play an important role in parasitic infections and autoimmune diseases, yet their influence on HIV-1 susceptibility has not been well studied. Here, we report several HLA-DP genotypes associated with HIV-1 susceptibility in Kenyan sex workers. Among these, one common genotype stands out. DPA1*010301 (frequency=60.4%) was associated with HIV-resistance (P=0.033, odds ratio=1.585, 95% confidence interval=1.036-2.425) and slower seroconversion (P=0.001, log rank=0.595, 95% confidence interval=0.433-0.817). The discovery of common HLA-DP antigens contributing to HIV-1 immunity may help overcome difficulties encountered with highly polymorphic HLA antigens.
doi:10.1097/QAD.0b013e328311d1a0
PMCID: PMC2683274  PMID: 18784467
HIV-1; Sex Workers; HLA-DPA1; HLA-DPB1; Disease Association; Disease Resistance; DNA Sequence Analysis
PLoS ONE  2009;4(9):e6965.
Background
CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions.
Methodology/Principal Findings
In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in “new” OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype.
Conclusions/Significance
Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition.
doi:10.1371/journal.pone.0006965
PMCID: PMC2735720  PMID: 19750221
Journal of Virology  2008;82(16):8172-8182.
APOBEC3G is an important innate immune molecule that causes human immunodeficiency virus type 1 (HIV-1) hypermutation, which can result in detrimental viral genome mutations. The Vif protein of wild-type HIV-1 counteracts APOBEC3G activity by targeting it for degradation and inhibiting its incorporation into viral particles. Additional APOBEC cytidine deaminases have been identified, such as APOBEC3F, which has a similar mode of action but different sequence specificity. A relationship between APOBEC3F/G and HIV disease progression has been proposed. During HIV-1 sequence analysis of the vpu/env region of 240 HIV-infected subjects from Nairobi, Kenya, 13 drastically hypermutated proviral sequences were identified. Sequences derived from plasma virus, however, lacked hypermutation, as did proviral vif. When correlates of disease progression were examined, subjects with hypermutated provirus were found to have significantly higher CD4 counts than the other subjects. Furthermore, hypermutation as estimated by elevated adenine content positively correlated with CD4 count for all 240 study subjects. The sequence context of the observed hypermutation was statistically associated with APOBEC3F/G activity. In contrast to previous studies, this study demonstrates that higher CD4 counts correlate with increased hypermutation in the absence of obvious mutations in the APOBEC inhibiting Vif protein. This strongly suggests that host factors, such as APOBEC3F/G, are playing a protective role in these patients, modulating viral hypermutation and host disease progression. These findings support the potential of targeting APOBEC3F/G for therapeutic purposes.
doi:10.1128/JVI.01115-08
PMCID: PMC2519552  PMID: 18550667
Journal of Virology  2007;82(4):1980-1992.
Human immunodeficiency virus type 1 (HIV-1) is able to evade the host cytotoxic T-lymphocyte (CTL) response through a variety of escape avenues. Epitopes that are presented to CTLs are first processed in the presenting cell in several steps, including proteasomal cleavage, transport to the endoplasmic reticulum, binding by the HLA molecule, and finally presentation to the T-cell receptor. An understanding of the potential of the virus to escape CTL responses can aid in designing an effective vaccine. To investigate such a potential, we analyzed HIV-1 gag from 468 HIV-1-positive Kenyan women by using several bioinformatic approaches that allowed the identification of positively selected amino acids in the HIV-1 gag region and study of the effects that these mutations could have on the various stages of antigen processing. Correlations between positively selected residues and mean CD4 counts also allowed study of the effect of mutation on HIV disease progression. A number of mutations that could create or destroy proteasomal cleavage sites or reduce binding affinity of the transport antigen processing protein, effectively hindering epitope presentation, were identified. Many mutations correlated with the presence of specific HLA alleles and with lower or higher CD4 counts. For instance, the mutation V190I in subtype A1-infected individuals is associated with HLA-B*5802 (P = 4.73 × 10−4), a rapid-progression allele according to other studies, and also to a decreased mean CD4 count (P = 0.019). Thus, V190I is a possible HLA escape mutant. This method classifies many positively selected mutations across the entire gag region according to their potential for immune escape and their effect on disease progression.
doi:10.1128/JVI.02742-06
PMCID: PMC2258736  PMID: 18057233

Results 1-24 (24)