PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Inhibition of Indoleamine-2,3-dioxygenase (IDO) in Glioblastoma Cells by Oncolytic Herpes Simplex Virus 
Advances in Virology  2012;2012:815465.
Successful oncolytic virus treatment of malignant glioblastoma multiforme depends on widespread tumor-specific lytic virus replication and escape from mitigating innate immune responses to infection. Here we characterize a new HSV vector, JD0G, that is deleted for ICP0 and the joint sequences separating the unique long and short elements of the viral genome. We observed that JD0G replication was enhanced in certain glioblastoma cell lines compared to HEL cells, suggesting that a vector backbone deleted for ICP0 may be useful for treatment of glioblastoma. The innate immune response to virus infection can potentially impede oncolytic vector replication in human tumors. Indoleamine-2,3-dioxygenase (IDO) is expressed in response to interferon γ (IFNγ) and has been linked to both antiviral functions and to the immune escape of tumor cells. We observed that IFNγ treatment of human glioblastoma cells induced the expression of IDO and that this expression was quelled by infection with both wild-type and JD0G viruses. The role of IDO in inhibiting virus replication and the connection of this protein to the escape of tumor cells from immune surveillance suggest that IDO downregulation by HSV infection may enhance the oncolytic activity of vectors such as JD0G.
doi:10.1155/2012/815465
PMCID: PMC3424635  PMID: 22924042
2.  Ectopic Matrix Metalloproteinase 9 Expression in Human Brain Tumor Cells Enhances Oncolytic HSV Vector Infection 
Gene therapy  2010;17(10):1200-1205.
Oncolytic HSV (oHSV) vectors have shown promise in the treatment of patients with recurrent brain tumors although few complete responses have accrued. Impediments to effective therapy include limited vector distribution on delivery, a consequence of injected virion particle trapping in the tumor extracellular matrix (ECM). To enhance virus delivery and spread, we investigated the use of the matrix metalloproteinase 9 (MMP9) as a means to degrade collagen type IV, a major component of the ECM and basement membranes of gliomas that is absent in normal brain tissue. SK-N-AS neuroblastoma cells were transduced for constitutive, elevated expression of MMP9, which did not enhance tumor cell migration in vitro or tumor progression in a murine xenograft brain tumor model. MMP9 expression afforded increased distribution of oHSV vector-infected tumor cell spheroids and afforded vector infection over larger areas of brain tumors in vivo. These results suggest that vector delivery and distribution in vivo can be improved by compromising the ECM, potentially enhancing oncolytic efficacy.
doi:10.1038/gt.2010.66
PMCID: PMC3228315  PMID: 20463757
3.  Serine 129 Phosphorylation Reduces the Ability of α-Synuclein to Regulate Tyrosine Hydroxylase and Protein Phosphatase 2A in Vitro and in Vivo* 
The Journal of Biological Chemistry  2010;285(23):17648-17661.
α-Synuclein (a-Syn), a protein implicated in Parkinson disease, contributes significantly to dopamine metabolism. a-Syn binding inhibits the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. Phosphorylation of TH stimulates its activity, an effect that is reversed by protein phosphatase 2A (PP2A). In cells, a-Syn overexpression activates PP2A. Here we demonstrate that a-Syn significantly inhibited TH activity in vitro and in vivo and that phosphorylation of a-Syn serine 129 (Ser-129) modulated this effect. In MN9D cells, a-Syn overexpression reduced TH serine 19 phosphorylation (Ser(P)-19). In dopaminergic tissues from mice overexpressing human a-Syn in catecholamine neurons only, TH-Ser-19 and TH-Ser-40 phosphorylation and activity were also reduced, whereas PP2A was more active. Cerebellum, which lacks excess a-Syn, had PP2A activity identical to controls. Conversely, a-Syn knock-out mice had elevated TH-Ser-19 phosphorylation and activity and less active PP2A in dopaminergic tissues. Using an a-Syn Ser-129 dephosphorylation mimic, with serine mutated to alanine, TH was more inhibited, whereas PP2A was more active in vitro and in vivo. Phosphorylation of a-Syn Ser-129 by Polo-like-kinase 2 in vitro reduced the ability of a-Syn to inhibit TH or activate PP2A, identifying a novel regulatory role for Ser-129 on a-Syn. These findings extend our understanding of normal a-Syn biology and have implications for the dopamine dysfunction of Parkinson disease.
doi:10.1074/jbc.M110.100867
PMCID: PMC2878529  PMID: 20356833
Enzyme Catalysis; Neurological Diseases; Neuron; Neurotransmitters; PP2A; Dopamine; MN9D Cells; Lentivirus; Null Mice; Transgenic Mice
4.  α-SYNUCLEIN AGGREGATION ALTERS TYROSINE HYDROXYLASE PHOSPHORYLATION AND IMMUNOREACTIVITY: LESSONS FROM VIRAL TRANSDUCTION OF KNOCKOUT MICE 
Neuroscience letters  2008;435(1):24-29.
Tyrosine hydroxylase (TH), the rate limiting enzyme in catecholamine synthesis, is frequently used as a marker of dopaminergic neuronal loss in animal models of Parkinson’s disease (PD). We have been exploring the normal function of the PD-related protein α-synuclein (α-Syn) with regard to dopamine synthesis. TH is activated by the phosphorylation of key seryl residues in the TH-regulatory-domain. Using in vitro models, our laboratory discovered that α-Syn inhibits TH by acting to reduce TH phosphorylation, which then reduces dopamine synthesis [31, 33]. We recently began exploring the impact of α-Syn on TH in vivo, by transducing dopaminergic neurons in α-Syn knockout mouse (ASKO) olfactory bulb using wild type human α-Syn lentivirus. At 3.5 – 21 days after viral delivery, α-Syn expression was transduced in periglomerular dopaminergic neurons. Cells with modest levels of α-Syn consistently co-labeled for Total-TH. However, cells bearing aggregated α-Syn, as revealed by proteinase K or Thioflavin-S treatment had significantly reduced Total-TH immunoreactivity, but high phosphoserine-TH labeling. On immunoblots, we noted that Total-TH immunoreactivity was equivalent in all conditions, although tissues with α-Syn aggregates again had higher phosphoserine-TH levels. This suggests that aggregated α-Syn is no longer able to inhibit TH. Although the reason(s) underlying reduced Total-TH immunoreactivity on tissue sections await(s) confirmation, the dopaminergic phenotype was easily verified using phosphorylation-state-specific TH antibodies. These findings have implications not only for normal α-Syn function in TH regulation, but also for measuring cell loss that is associated with synucleinopathy.
doi:10.1016/j.neulet.2008.02.014
PMCID: PMC2440662  PMID: 18314273
Parkinson’s disease; lentivirus; knockout mice; transduction
5.  The Stable 2.0-Kilobase Intron of the Herpes Simplex Virus Type 1 Latency-Associated Transcript Does Not Function as an Antisense Repressor of ICP0 in Nonneuronal Cells 
Journal of Virology  2003;77(6):3516-3530.
During latency, herpes simplex virus expresses a unique set of latency-associated transcripts (LATs). As the 2.0-kb LAT intron is complementary to, and overlaps, the 3′ end of the ICP0 transcript, it has been suggested that the stable LAT intron might function as an antisense repressor of ICP0 expression. We tested this hypothesis in cell culture by dissociating cis- and trans-acting effects of the 2.0-kb LAT, using a series of complementary strategies. Initially, we constructed 293T cell lines that stably express the nuclear 2.0-kb LAT intron to determine whether LAT accumulation in trans affects ICP0 expression. ICP0 mRNA and protein expression profiles were studied (i) following infections with a viral mutant containing wild-type LAT and ICP0 sequences but having deletions of other immediate-early (IE) genes, thus preventing the progression of viral early gene expression, (ii) at early time points after infection with wild-type virus, before viral LAT expression, and (iii) by plasmid transfections. Northern and Western blot analysis showed that trans expression of the 2.0-kb LAT intron does not affect ICP0 mRNA expression, stability, accumulation, splicing, or translation. In addition, suppression of viral replication by overexpression of the 2.0-kb LAT, which has been detected previously in neuronal cell lines, was not found in these nonneuronal cell lines. However, deletion of the latency-active promoter (LAP) region of the virus resulted in overexpression of IE genes, which occurred soon after infection, before viral LAT expression had commenced. This was not complemented by the expression of LAT in trans, suggesting that the LAP deletion affected transcriptional regulation of the IE genes in cis. We conclude that the function of the highly conserved LAT intron is unlikely to involve a direct-acting anti-ICP0 antisense mechanism but that the LAT region could affect ICP0 mRNA expression from the viral genome.
doi:10.1128/JVI.77.6.3516-3530.2003
PMCID: PMC149500  PMID: 12610127

Results 1-5 (5)