Search tips
Search criteria

Results 1-25 (29)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Failure of daily tenofovir to prevent HIV transmission or the establishment of a significant viral reservoir despite continued antiretroviral therapy 
Journal of the International AIDS Society  2014;17(4Suppl 3):19731.
Truvada is licenced for HIV-1 prevention in the USA and is available in the private sector. Tenofovir performed as well as Truvada in the PARTNERS PrEP study and is used as HIV pre-exposure prophylaxis (PreP) in some settings. The clinical efficacy of Tenofovir for PrEP outside a clinical trial is unknown. Antiretroviral therapy (ART) at acute HIV-1 infection (AHI) limits the size of the reservoir, optimizing the chance of maintaining viral control off therapy. As such ART at acute HIV infection is proposed to offer a functional cure in a minority of subjects. We present two cases where Tenofovir PrEP failed to prevent HIV acquisition and failed to limit viral reservoir.
Materials and Methods
Two individuals receiving tenofovir monotherapy for Hepatitis B monoinfection were diagnosed with AHI as defined by a negative HIV antibody test within three months of a positive HIV test following unsafe sex with casual male partners. In-depth histories were taken. Viral genotypes and Tenofovir drug levels were measured from samples taken as close to HIV seroconversion as possible and subsequent samples were analyzed for proviral Total HIV-1 DNA by qPCR.
Patient A had received tenofovir for the preceding six years and always maintained an undetectable Hepatitis B viral load with no concerns about adherence. Two weeks preceding the positive HIV antibody test, he experienced mild symptoms (fever, pharyngitis) of HIV seroconversion. HIV status was confirmed by a repeat fourth generation HIV antibody test and by Western Blot and an HIV viral load was undetectable. Tenofovir trough level at HIV diagnosis was within normal limits. The regimen was intensified to Eviplera and a total HIV-1 DNA was 1381 copies/million CD4 T cells. Patient B received four regimens for hepatitis B treatment before starting tenofovir monotherapy in 2011 and subsequently maintained an undetectable hepatitis B viral load. After three years of tenofovir monotherapy he developed a severe symptomatic seroconversion illness and tested HIV antibody positive. The baseline HIV viral load was 103,306 copies/mL. The regimen was intensified and total HIV-1 DNA was 2746 copies/million CD4 T cells.
Further investigation into the efficacy of tenofovir for PrEP outside a clinical trial is required. ART at AHI does not always lead to a low viral reservoir. To explore the possibility of replication incompetent virus, viral outgrowth assays are underway.
PMCID: PMC4225356  PMID: 25397477
2.  HIV-1 DNA predicts disease progression and post-treatment virological control 
eLife  2014;3:e03821.
In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials.
eLife digest
HIV is a virus that can hide in, and hijack, the cells of the immune system and force them to make new copies of the virus. This eventually destroys the infected cells and weakens the ability of a person with HIV to fight off infections and disease. If diagnosed early and treated, most people with HIV now live long and healthy lives and do not develop AIDS—the last stage of HIV infection when previously harmless, opportunistic infections can become life-threatening. However, there are still numerous hurdles and challenges that must be overcome before a cure for HIV/AIDS can be developed.
Treatment with drugs called antiretrovirals can reduce the amount of the HIV virus circulating in an infected person's bloodstream to undetectable levels. However, when HIV infects a cell, the virus inserts a copy of its genetic material into the cell's DNA—and, for most patients, antiretroviral treatment does not tackle these ‘hidden viruses’. As such, and in spite of their side-effects, antiretroviral drugs have to be taken for life in case the hidden viruses re-emerge.
As research into a cure for HIV/AIDS gathers momentum, patients who might be candidates for new experimental treatments will need to be identified. Although it is not recommended as part of standard clinical care, the only way to test if a patient's viral levels would remain suppressed without the drugs would be to temporarily stop the treatment under the close supervision of a physician. As such, a new method is needed to identify if there are patients who might benefit from stopping antiretroviral therapy, and more importantly, those who might not.
Williams, Hurst et al. have now tested whether measuring the levels of HIV DNA directly might help to predict if, and when, the virus might re-emerge (or rebound). In a group of HIV patients participating in a clinical trial, those with higher levels of HIV DNA at the point that the treatment was stopped were found to experience faster viral rebound than those with lower levels of HIV DNA. This method could therefore identify those patients who are at the greatest risk of HIV viral rebound, and are therefore unlikely to benefit if their treatment is interrupted.
Williams, Hurst et al. also found that measuring the levels of HIV DNA could help to predict how the disease would progress in treated and untreated patients. Furthermore, these predictions were more accurate than those based on measuring the amount of the virus circulating in a patient's body.
The next challenge is to identify other methods to distinguish patients who may remain ‘virus-free’ for a period without treatment, from those who would not. With this achieved, it might be possible to identify the mechanisms that determine why the virus comes back and so develop new treatments to stop this happening. This would make developing a cure for HIV/AIDS a much more tangible prospect.
PMCID: PMC4199415  PMID: 25217531
HIV-1; reservoir; antiretroviral therapy; cure; primary infection; human
3.  High-Multiplicity HIV-1 Infection and Neutralizing Antibody Evasion Mediated by the Macrophage-T Cell Virological Synapse 
Journal of Virology  2014;88(4):2025-2034.
Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4+ T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy.
PMCID: PMC3911534  PMID: 24307588
4.  Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, ‘definetherain’ 
Journal of Virological Methods  2014;202(100):46-53.
•The requirement for protocol adaptation from qPCR to ddPCR is characterised.•A potential loss of sensitivity for ddPCR at low target numbers is reported.•A new bioinformatic tool ‘definetherain’ to improve droplet calling at low input target numbers is devised and applied.•‘Definetherain’ is made available free of charge and open access at
Droplet Digital PCR (ddPCR) represents a new and alternative platform to conventional quantitative-PCR (qPCR) for the quantitation of DNA templates. However, the proposed improvement in sensitivity and reproducibility offered by ddPCR is not yet fully proven, partly because the delineation between positive and negative responses is not always clear.
Data are presented demonstrating the sensitivity of the ddPCR system to both reagent concentrations and choice of cut-off for defining positive and negative results. By implementing k-nearest clustering, cut-offs are produced that improve the accuracy of ddPCR where target DNA is present at low copy numbers, a key application of ddPCR. This approach is applied to human albumin and HIV-1 proviral DNA ddPCR quantitative protocols. This tool is coded in JavaScript and has been made available for free in a web browser at Optimisation of the analyses of raw ddPCR data using ‘definetherain’ indicates that low target number detection can be improved by its implementation. Further application to patient samples will help define the clinical utility of this approach.
PMCID: PMC4003534  PMID: 24598230
Quantitative PCR; Droplet Digital PCR; HIV-1; k means clustering
5.  Mast cell leukemia with prolonged survival on PKC412/midostaurin 
Mast cell leukemia (MCL) is a rare and aggressive form of systemic mastocytosis. There are approximately 50 reported cases since 1950s. MCL is refractory to cytoreduction chemotherapy and the average survival is only six months. We report a MCL case in a 71 year-old woman with high tumor load at the initial presentation in 2005, who did not respond to either interleukin-2 or dasatinib therapy. After enrolled in a clinical trial of PKC412 (or Midostaurin) with a daily dose of 100 mg, the patient responded well to PKC412 and became transfusion independent in three months. Since then, her disease had been stably controlled. This is the first report of a high-tumor-load MCL case which achieved prolonged survival (101 months) by PKC 412. The 101-month overall survival is the longest among reported MCL cases in the English literature.
PMCID: PMC4097263  PMID: 25031773
Mast cell leukemia; aleukemic variant; c-kit; D816V; PKC412; Midostaurin; prolonged survival
6.  Towards an HIV cure: science and debate from the International AIDS Society 2013 symposium 
Retrovirology  2013;10:134.
The International AIDS Society convened the multi-stakeholder “Towards an HIV Cure” symposium in Kuala Lumpur, Malaysia in 2013 to address the significant research challenges posed by the search for a cure for HIV infection. Current antiretroviral regimens select for a small reservoir of cells that harbour latent HIV provirus, produce few or no HIV virions, and resist detection or clearance by host immunity. The symposium examined basic molecular science and animal model data, and emerging and ongoing clinical trial results to prioritise strategies and determine the viral and immune responses that could lead to HIV remission without ART. Here we review the presentations that scrutinized the molecular mechanisms controlling virus expression from proviral DNA, and the intrinsic cellular restriction and immune mechanisms preventing viral production. Insights from the basic science have translated into new therapeutic strategies seeking HIV remission without ongoing therapy, and much interest was focused on these ongoing trials. We also summarise the emerging ethical issues and patient expectations as concepts move into the clinic.
PMCID: PMC3828479  PMID: 24224983
7.  Duration of HIV-1 Viral Suppression on Cessation of Antiretroviral Therapy in Primary Infection Correlates with Time on Therapy 
PLoS ONE  2013;8(10):e78287.
A minority of HIV-1 positive individuals treated with antiretroviral therapy (ART) in primary HIV-1 infection (PHI) maintain viral suppression on stopping. Whether this is related to ART duration has not been explored.
And Methods: Using SPARTAC trial data from individuals recruited within 6 months of seroconversion, we present an observational analysis investigating whether duration of ART was associated with post-treatment viraemic control. Kaplan-Meier estimates, logistic regression and Cox models were used.
165 participants reached plasma viral loads (VL) <400 copies/ml at the time of stopping therapy (ART stop). After ART stop, 159 experienced confirmed VL ≥400 copies/ml during median (IQR) follow-up of 167 (108,199) weeks.
Most participants experienced VL rebound within 12 weeks from ART stop, however, there was a suggestion of a higher probability of remaining <400 copies/ml for those on ART >12 weeks compared to ≤12 weeks (p=0.061). Cumulative probabilities of remaining <400 copies/ml at 12, 52 and 104 weeks after ART stop were 21% (95%CI=13,30), 4% (1,9), and 4% (1,9) for ≤12 weeks ART, and 32% (22,42), 14% (7,22), and 5% (2,11) for >12 weeks.
In multivariable regression, ART for >12 weeks was independently associated with a lower probability of being ≥400 copies/ml within 12 weeks of ART stop (OR=0.11 (95%CI=0.03,0.34), p<0.001)). In Cox models of time to VL ≥400 after 12 weeks, we only found an association with female sex (OR=0.2, p=0.001).
Longer ART duration in PHI was associated with a higher probability of viral control after ART stop.
Trial Registration 76742797
PMCID: PMC3808338  PMID: 24205183
8.  HLA-A*7401–Mediated Control of HIV Viremia Is Independent of Its Linkage Disequilibrium with HLA-B*5703 
The potential contribution of HLA-A alleles to viremic control in chronic HIV type 1 (HIV-1) infection has been relatively understudied compared with HLA-B. In these studies, we show that HLA-A*7401 is associated with favorable viremic control in extended southern African cohorts of >2100 C-clade–infected subjects. We present evidence that HLA-A*7401 operates an effect that is independent of HLA-B*5703, with which it is in linkage disequilibrium in some populations, to mediate lowered viremia. We describe a novel statistical approach to detecting additive effects between class I alleles in control of HIV-1 disease, highlighting improved viremic control in subjects with HLA-A*7401 combined with HLA-B*57. In common with HLA-B alleles that are associated with effective control of viremia, HLA-A*7401 presents highly targeted epitopes in several proteins, including Gag, Pol, Rev, and Nef, of which the Gag epitopes appear immunodominant. We identify eight novel putative HLA-A*7401–restricted epitopes, of which three have been defined to the optimal epitope. In common with HLA-B alleles linked with slow progression, viremic control through an HLA-A*7401–restricted response appears to be associated with the selection of escape mutants within Gag epitopes that reduce viral replicative capacity. These studies highlight the potentially important contribution of an HLA-A allele to immune control of HIV infection, which may have been concealed by a stronger effect mediated by an HLA-B allele with which it is in linkage disequilibrium. In addition, these studies identify a factor contributing to different HIV disease outcomes in individuals expressing HLA-B*5703.
PMCID: PMC3738002  PMID: 21498667
9.  Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity 
The latent HIV-1 reservoir remains the major barrier to HIV-1 eradication. Although successful at limiting HIV replication, highly active antiretroviral therapy is unable to cure HIV infection, thus novel therapeutic strategies are needed to eliminate the virus. Magnetic field hyperthermia (MFH) generates thermoablative cytotoxic temperatures in target-cell populations, and has delivered promising outcomes in animal models, as well as in several cancer clinical trials. MFH has been proposed as a strategy to improve the killing of HIV-infected cells and for targeting the HIV latent reservoirs. We wished to determine whether MFH could be used to enhance cytotoxic T-lymphocyte (CTL) targeting of HIV-infected cells in a proof-of-concept study. Here, for the first time, we apply MFH to an infectious disease (HIV-1) using the superparamagnetic iron oxide nanoparticle FeraSpin R. We attempt to improve the cytotoxic potential of T-cell receptor-transfected HIV-specific CTLs using thermotherapy, and assess superparamagnetic iron oxide nanoparticle toxicity, uptake, and effect on cell function using more sensitive methods than previously described. FeraSpin R exhibited only limited toxicity, demonstrated efficient uptake and cell-surface attachment, and only modestly impacted T-cell function. In contrast to the cancer models, insufficient MFH was generated to enhance CTL killing of HIV-infected cells. MFH remains an exciting new technology in the field of cancer therapeutics, which, as technology improves, may have significant potential to enhance CTL function and act as an adjunctive therapy in the eradication of latently infected HIV-positive cells.
PMCID: PMC3726440  PMID: 23901272
nanoparticles; HIV-1; thermotherapy; cytotoxic T-cell
10.  Integrating genealogical and dynamical modelling to infer escape and reversion rates in HIV epitopes 
The rates of escape and reversion in response to selection pressure arising from the host immune system, notably the cytotoxic T-lymphocyte (CTL) response, are key factors determining the evolution of HIV. Existing methods for estimating these parameters from cross-sectional population data using ordinary differential equations (ODEs) ignore information about the genealogy of sampled HIV sequences, which has the potential to cause systematic bias and overestimate certainty. Here, we describe an integrated approach, validated through extensive simulations, which combines genealogical inference and epidemiological modelling, to estimate rates of CTL escape and reversion in HIV epitopes. We show that there is substantial uncertainty about rates of viral escape and reversion from cross-sectional data, which arises from the inherent stochasticity in the evolutionary process. By application to empirical data, we find that point estimates of rates from a previously published ODE model and the integrated approach presented here are often similar, but can also differ several-fold depending on the structure of the genealogy. The model-based approach we apply provides a framework for the statistical analysis and hypothesis testing of escape and reversion in population data and highlights the need for longitudinal and denser cross-sectional sampling to enable accurate estimate of these key parameters.
PMCID: PMC3673055  PMID: 23677344
phylodynamics; HIV; escape; genealogy; peeling; cytotoxic T-lymphocyte
11.  Acute EBV infection masquerading as "In-situ Follicular Lymphoma": a pitfall in the differential diagnosis of this entity 
Diagnostic Pathology  2013;8:100.
We present the case of a 30 year-old man who was referred for evaluation of diffuse lymphadenopathy. Six weeks prior, he noticed darkening of his urine associated with pale stools, nausea and an eventual 30 lb weight loss within a month. The initial laboratory findings showed elevation of the liver enzymes. A CT scan showed mesenteric and periaortic lymphadenopathy with the largest lymph node measuring 2.8 cm. Other laboratory results were otherwise unremarkable (including a normal LDH) with the exception of positive serum antibodies against Epstein-Barr virus (EBV) associated antigens (IgM+ and IgG+). An excisional biopsy of 4 of the small neck lymph nodes showed a normal architecture with prominent follicles and an intact capsule. But, by immunohistochemistry two of the follicles showed aberrant coexpression of BCL-2, in addition to CD10 and BCL-6. In-situ hybridization for early Epstein-Barr virus mRNA (EBER) and immunohistochemistry for latent membrane protein-1 (LMP-1) stained both scattered positive cells, as well as BCL-2 positive B-cells. Although an original diagnosis of in-situ follicular lymphoma was favored at an outside facility, additional interphase fluorescence in situ hybridization (FISH) studies for t(14;18);(IGH-BCL2) rearrangement (performed on the BCL-2 + follicles microdissected from the tissue block; Abott probe dual colour fusion) and molecular studies (IGH gene rearrangement by PCR, also performed on the microdissected follicles) were negative. Serologic studies (positive EBV antibodies) and immunostains in conjunction with the molecular studies confirmed the reactive nature of the changes. Our case also shows direct immunopathogenic evidence of BCL-2 expression among the EBV-infected cells, which has to our knowledge not been previously documented in vivo. A diagnosis of EBV infection should, therefore, be considered when confronted with BCL-2 expression in germinal centers, particularly in younger individuals, as the diagnosis of FLIS may lead to extensive and invasive haematologic work-ups.
Virtual slides
The virtual slide(s) for this article can be found here:
PMCID: PMC3874606  PMID: 23782909
12.  HIV Control through a Single Nucleotide on the HLA-B Locus 
Journal of Virology  2012;86(21):11493-11500.
Genetic variation within the HLA-B locus has the strongest impact on HIV disease progression of any polymorphisms within the human genome. However, identifying the exact mechanism involved is complicated by several factors. HLA-Bw4 alleles provide ligands for NK cells and for CD8 T cells, and strong linkage disequilibrium between HLA class I alleles complicates the discrimination of individual HLA allelic effects from those of other HLA and non-HLA alleles on the same haplotype. Here, we exploit an experiment of nature involving two recently diverged HLA alleles, HLA-B*42:01 and HLA-B*42:02, which differ by only a single amino acid. Crucially, they occur primarily on identical HLA class I haplotypes and, as Bw6 alleles, do not act as NK cell ligands and are therefore largely unconfounded by other genetic factors. We show that in an outbred cohort (n = 2,093) of HIV C-clade-infected individuals, a single amino acid change at position 9 of the HLA-B molecule critically affects peptide binding and significantly alters the cytotoxic T lymphocyte (CTL) epitopes targeted, measured directly ex vivo by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay (P = 2 × 10−10) and functionally through CTL escape mutation (P = 2 × 10−8). HLA-B*42:01, which presents multiple Gag epitopes, is associated with a 0.52 log10 lower viral-load set point than HLA-B*42:02 (P = 0.02), which presents no p24 Gag epitopes. The magnitude of this effect from a single amino acid difference in the HLA-A*30:01/B*42/Cw*17:01 haplotype is equivalent to 75% of that of HLA-B*57:03, the most protective HLA class I allele in this population. This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of a particular HIV-specific CTL on disease control.
PMCID: PMC3486337  PMID: 22896606
13.  Co-Operative Additive Effects between HLA Alleles in Control of HIV-1 
PLoS ONE  2012;7(10):e47799.
HLA class I genotype is a major determinant of the outcome of HIV infection, and the impact of certain alleles on HIV disease outcome is well studied. Recent studies have demonstrated that certain HLA class I alleles that are in linkage disequilibrium, such as HLA-A*74 and HLA-B*57, appear to function co-operatively to result in greater immune control of HIV than mediated by either single allele alone. We here investigate the extent to which HLA alleles - irrespective of linkage disequilibrium - function co-operatively.
Methodology/Principal Findings
We here refined a computational approach to the analysis of >2000 subjects infected with C-clade HIV first to discern the individual effect of each allele on disease control, and second to identify pairs of alleles that mediate ‘co-operative additive’ effects, either to improve disease suppression or to contribute to immunological failure. We identified six pairs of HLA class I alleles that have a co-operative additive effect in mediating HIV disease control and four hazardous pairs of alleles that, occurring together, are predictive of worse disease outcomes (q<0.05 in each case). We developed a novel ‘sharing score’ to quantify the breadth of CD8+ T cell responses made by pairs of HLA alleles across the HIV proteome, and used this to demonstrate that successful viraemic suppression correlates with breadth of unique CD8+ T cell responses (p = 0.03).
These results identify co-operative effects between HLA Class I alleles in the control of HIV-1 in an extended Southern African cohort, and underline complementarity and breadth of the CD8+ T cell targeting as one potential mechanism for this effect.
PMCID: PMC3477121  PMID: 23094091
14.  Virus Immune Evasion: New Mechanism and Implications in Disease Outcome 
Advances in Virology  2012;2012:490549.
PMCID: PMC3462381  PMID: 23049554
15.  Clonal Architecture of Secondary Acute Myeloid Leukemia 
The New England Journal of Medicine  2012;366(12):1090-1098.
The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood.
We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations.
Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene.
Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.)
PMCID: PMC3320218  PMID: 22417201
16.  Cytotoxic T-Lymphocyte Escape Mutations Identified by HLA Association Favor Those Which Escape and Revert Rapidly 
Journal of Virology  2012;86(16):8568-8580.
Identifying human immunodeficiency virus (HIV) immune escape mutations has implications for understanding the impact of host immunity on pathogen evolution and guiding the choice of vaccine antigens. One means of identifying cytotoxic-T-lymphocyte (CTL) escape mutations is to search for statistical associations between mutations and host human leukocyte antigen (HLA) class I alleles at the population level. The impact of evolutionary rates on the strength of such associations is not well defined. Here, we address this topic using a mathematical model of within-host evolution and between-host transmission of CTL escape mutants that predicts the prevalence of escape mutants at the population level. We ask how the rates at which an escape mutation emerges in a host who bears the restricting HLA and reverts when transmitted to a host who does not bear the HLA affect the strength of an association. We consider the impact of these factors when using a standard statistical method to test for an association and when using an adaptation of that method that corrects for phylogenetic relationships. We show that with both methods, the average sample size required to identify an escape mutation is smaller if the mutation escapes and reverts quickly. Thus, escape mutations identified as HLA associated systematically favor those that escape and revert rapidly. We also present expressions that can be used to infer escape and reversion rates from cross-sectional escape prevalence data.
PMCID: PMC3421756  PMID: 22674992
Nature Genetics  2011;44(1):53-57.
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole genome sequencing to perform an unbiased comprehensive screen to discover all the somatic mutations in a sAML sample and genotyped these loci in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (S34) in U2AF1 was recurrently mutated in 13/150 (8.7%) de novo MDS patients, with suggestive evidence of an associated increased risk of progression to sAML. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3′ end of introns and mutations are located in highly conserved zinc fingers in U2AF11,2. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This novel, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.
PMCID: PMC3247063  PMID: 22158538
18.  Gastrointestinal lymphomas in a North American population: clinicopathologic features from one major Central-Midwestern United States tertiary care medical center 
Diagnostic Pathology  2012;7:76.
Gastrointestinal (GI) lymphomas are very common types of extranodal lymphomas, and we hypothesize there are regional differences in subtype, distribution in the GI tract, and epidemiological features among the different populations.
We retrospectively evaluated the clinical, molecular and histologic features of North American primary and secondary GI lymphomas diagnosed from 2000–2009 seen at our institution. We utilized immunohistochemistry and fluorescence in situ hybridization to further evaluate a subset of the gastric lymphomas.
Extranodal marginal zone lymphomas of mucosal associated lymphoid tissue (MALTs) and diffuse large B cell lymphomas (DLBCLs) were the most common subtypes of GI lymphomas. Select gastric DLBCLs (N = 6) and MALTs (N = 13) were further examined for API2-MALT1 and IGH translocations, and P16 and P53 protein expression. Gastric MALTs showed frequent API2-MALT1 (38%) but not IGH translocations (0%), and the DLBCLs showed neither translocation. Expression of P16 and P53 proteins and the proliferative index were compared between high grade gastric lymphomas (gastric DLBCLs) and low grade gastric lymphomas (gastric MALTs). P53 overexpression (P = 0.008) and a high proliferation index [Ki-67] (P = 0.00042) were significantly associated with gastric DLBCL, but no statistically significant difference was observed in P16 expression (p = 0.108) between gastric DLBCL and gastric MALT.
Our study revealed that GI lymphomas from a Central-Midwestern North American population showed differences and similarities to non-North American cohorts. In addition, API2-MALT1, P16 and P53 abnormalities occurred frequently in gastric lymphomas from this North American population.
Virtual slides
The virtual slides for this article can be found here:
PMCID: PMC3537672  PMID: 22742986
Gastrointestinal lymphoma; Secondary versus primary; Molecular features; Locations
19.  Widespread Impact of HLA Restriction on Immune Control and Escape Pathways of HIV-1 
Journal of Virology  2012;86(9):5230-5243.
The promiscuous presentation of epitopes by similar HLA class I alleles holds promise for a universal T-cell-based HIV-1 vaccine. However, in some instances, cytotoxic T lymphocytes (CTL) restricted by HLA alleles with similar or identical binding motifs are known to target epitopes at different frequencies, with different functional avidities and with different apparent clinical outcomes. Such differences may be illuminated by the association of similar HLA alleles with distinctive escape pathways. Using a novel computational method featuring phylogenetically corrected odds ratios, we systematically analyzed differential patterns of immune escape across all optimally defined epitopes in Gag, Pol, and Nef in 2,126 HIV-1 clade C-infected adults. Overall, we identified 301 polymorphisms in 90 epitopes associated with HLA alleles belonging to shared supertypes. We detected differential escape in 37 of 38 epitopes restricted by more than one allele, which included 278 instances of differential escape at the polymorphism level. The majority (66 to 97%) of these resulted from the selection of unique HLA-specific polymorphisms rather than differential epitope targeting rates, as confirmed by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISPOT) data. Discordant associations between HLA alleles and viral load were frequently observed between allele pairs that selected for differential escape. Furthermore, the total number of associated polymorphisms strongly correlated with average viral load. These studies confirm that differential escape is a widespread phenomenon and may be the norm when two alleles present the same epitope. Given the clinical correlates of immune escape, such heterogeneity suggests that certain epitopes will lead to discordant outcomes if applied universally in a vaccine.
PMCID: PMC3347390  PMID: 22379086
20.  Adaptation of HIV-1 to human leukocyte antigen class I 
Nature  2009;458(7238):641-645.
The rapid and extensive spread of the human immunodeficiency virus (HIV) epidemic provides a rare opportunity to witness host–pathogen co-evolution involving humans. A focal point is the interaction between genes encoding human leukocyte antigen (HLA) and those encoding HIV proteins. HLA molecules present fragments (epitopes) of HIV proteins on the surface of infected cells to enable immune recognition and killing by CD8+ T cells; particular HLA molecules, such as HLA-B*57, HLA-B*27 and HLA-B*51, are more likely to mediate successful control of HIV infection1. Mutation within these epitopes can allow viral escape from CD8+ T-cell recognition. Here we analysed viral sequences and HLA alleles from >2,800 subjects, drawn from 9 distinct study cohorts spanning 5 continents. Initial analysis of the HLA-B*51-restricted epitope, TAFTIPSI (reverse transcriptase residues 128–135), showed a strong correlation between the frequency of the escape mutation I135X and HLA-B*51 prevalence in the 9 study cohorts (P = 0.0001). Extending these analyses to incorporate other well-defined CD8+ T-cell epitopes, including those restricted by HLA-B*57 and HLA-B*27, showed that the frequency of these epitope variants (n = 14) was consistently correlated with the prevalence of the restricting HLA allele in the different cohorts (together, P < 0.0001), demonstrating strong evidence of HIV adaptation to HLA at a population level. This process of viral adaptation may dismantle the well-established HLA associations with control of HIV infection that are linked to the availability of key epitopes, and highlights the challenge for a vaccine to keep pace with the changing immunological landscape presented by HIV.
PMCID: PMC3148020  PMID: 19242411
21.  Phylogenetic analysis consistent with a clinical history of sexual transmission of HIV-1 from a single donor reveals transmission of highly distinct variants 
Retrovirology  2011;8:54.
To combat the pandemic of human immunodeficiency virus 1 (HIV-1), a successful vaccine will need to cope with the variability of transmissible viruses. Human hosts infected with HIV-1 potentially harbour many viral variants but very little is known about viruses that are likely to be transmitted, or even if there are viral characteristics that predict enhanced transmission in vivo. We show for the first time that genetic divergence consistent with a single transmission event in vivo can represent several years of pre-transmission evolution.
We describe a highly unusual case consistent with a single donor transmitting highly related but distinct HIV-1 variants to two individuals on the same evening. We confirm that the clustering of viral genetic sequences, present within each recipient, is consistent with the history of a single donor across the viral env, gag and pol genes by maximum likelihood and Bayesian Markov Chain Monte Carlo based phylogenetic analyses. Based on an uncorrelated, lognormal relaxed clock of env gene evolution calibrated with other datasets, the time since the most recent common ancestor is estimated as 2.86 years prior to transmission (95% confidence interval 1.28 to 4.54 years).
Our results show that an effective design for a preventative vaccine will need to anticipate extensive HIV-1 diversity within an individual donor as well as diversity at the population level.
PMCID: PMC3161944  PMID: 21736738
22.  Progression to AIDS in South Africa Is Associated with both Reverting and Compensatory Viral Mutations 
PLoS ONE  2011;6(4):e19018.
We lack the understanding of why HIV-infected individuals in South Africa progress to AIDS. We hypothesised that in end-stage disease there is a shifting dynamic between T cell imposed immunity and viral immune escape, which, through both compensatory and reverting viral mutations, results in increased viral fitness, elevated plasma viral loads and disease progression. We explored how T cell responses, viral adaptation and viral fitness inter-relate in South African cohorts recruited from Bloemfontein, the Free State (n = 278) and Durban, KwaZulu-Natal (n = 775). Immune responses were measured by γ-interferon ELISPOT assays. HLA-associated viral polymorphisms were determined using phylogenetically corrected techniques, and viral replication capacity (VRC) was measured by comparing the growth rate of gag-protease recombinant viruses against recombinant NL4-3 viruses. We report that in advanced disease (CD4 counts <100 cells/µl), T cell responses narrow, with a relative decline in Gag-directed responses (p<0.0001). This is associated with preserved selection pressure at specific viral amino acids (e.g., the T242N polymorphism within the HLA-B*57/5801 restricted TW10 epitope), but with reversion at other sites (e.g., the T186S polymorphism within the HLA-B*8101 restricted TL9 epitope), most notably in Gag and suggestive of “immune relaxation”. The median VRC from patients with CD4 counts <100 cells/µl was higher than from patients with CD4 counts ≥500 cells/µl (91.15% versus 85.19%, p = 0.0004), potentially explaining the rise in viral load associated with disease progression. Mutations at HIV Gag T186S and T242N reduced VRC, however, in advanced disease only the T242N mutants demonstrated increasing VRC, and were associated with compensatory mutations (p = 0.013). These data provide novel insights into the mechanisms of HIV disease progression in South Africa. Restoration of fitness correlates with loss of viral control in late disease, with evidence for both preserved and relaxed selection pressure across the HIV genome. Interventions that maintain viral fitness costs could potentially slow progression.
PMCID: PMC3081339  PMID: 21544209
23.  Modelling the Evolution and Spread of HIV Immune Escape Mutants 
PLoS Pathogens  2010;6(11):e1001196.
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Author Summary
HIV evolves so quickly that it can be seen to adapt within one infected person. Evolutionary escape from immunity is particularly well-described. Escape variants transmit to new hosts, where they may revert. We present a mathematical model of three processes: within-host evolution of escape mutants, transmission of those variants between hosts and subsequent reversion in new hosts. Using this model we reconcile diverse datasets on HIV immune escape, highlighting where multiple data sources agree or disagree on the underlying rate processes. The several-dozen immune epitopes we survey reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. Although there are frequent reports in the literature of early and rapid within-host evolution of HIV, for many epitopes this is not reflected in fast evolution at the population level.
PMCID: PMC2987822  PMID: 21124991
24.  Integrated Genomic Analysis Implicates Haploinsufficiency of Multiple Chromosome 5q31.2 Genes in De Novo Myelodysplastic Syndromes Pathogenesis 
PLoS ONE  2009;4(2):e4583.
Deletions spanning chromosome 5q31.2 are among the most common recurring cytogenetic abnormalities detectable in myelodysplastic syndromes (MDS). Prior genomic studies have suggested that haploinsufficiency of multiple 5q31.2 genes may contribute to MDS pathogenesis. However, this hypothesis has never been formally tested. Therefore, we designed this study to systematically and comprehensively evaluate all 28 chromosome 5q31.2 genes and directly test whether haploinsufficiency of a single 5q31.2 gene may result from a heterozygous nucleotide mutation or microdeletion. We selected paired tumor (bone marrow) and germline (skin) DNA samples from 46 de novo MDS patients (37 without a cytogenetic 5q31.2 deletion) and performed total exonic gene resequencing (479 amplicons) and array comparative genomic hybridization (CGH). We found no somatic nucleotide changes in the 46 MDS samples, and no cytogenetically silent 5q31.2 deletions in 20/20 samples analyzed by array CGH. Twelve novel single nucleotide polymorphisms were discovered. The mRNA levels of 7 genes in the commonly deleted interval were reduced by 50% in CD34+ cells from del(5q) MDS samples, and no gene showed complete loss of expression. Taken together, these data show that small deletions and/or point mutations in individual 5q31.2 genes are not common events in MDS, and implicate haploinsufficiency of multiple genes as the relevant genetic consequence of this common deletion.
PMCID: PMC2642994  PMID: 19240791
25.  Secondary Lymphoma Involving Metastatic Follicular Thyroid Carcinoma to the Skull: A Unique Example of Tumor-to-Tumor Metastasis 
Head and Neck Pathology  2008;2(3):209-212.
Tumor-to-tumor metastases to the skull, presenting as a scalp mass, and thyroid follicular carcinoma presenting in that location are extremely rare. We present the case of a patient with recently diagnosed retroperitoneal diffuse large B-cell lymphoma and an 8-year history of a non-tender large scalp-based mass. The scalp mass was an osteolytic enhancing lesion on imaging studies and diagnosed as metastatic thyroid carcinoma to the skull. The patient had no pre-existing history of thyroid cancer. This metastatic carcinoma was also secondarily involved with diffuse large B-cell lymphoma. This case illustrates a unique and previously unreported example of tumor-to-tumor metastasis in which both malignancies represent metastatic tumors to the skull with soft tissue extension presenting as a large scalp mass.
PMCID: PMC2807566  PMID: 20614316
Thyroid follicular carcinoma; Thyroid carcinoma; Skull metastasis; Non-Hodgkin’s lymphoma; Large cell lymphoma; Tumor-to-tumor metastasis

Results 1-25 (29)