PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Towards an HIV cure: science and debate from the International AIDS Society 2013 symposium 
Retrovirology  2013;10:134.
The International AIDS Society convened the multi-stakeholder “Towards an HIV Cure” symposium in Kuala Lumpur, Malaysia in 2013 to address the significant research challenges posed by the search for a cure for HIV infection. Current antiretroviral regimens select for a small reservoir of cells that harbour latent HIV provirus, produce few or no HIV virions, and resist detection or clearance by host immunity. The symposium examined basic molecular science and animal model data, and emerging and ongoing clinical trial results to prioritise strategies and determine the viral and immune responses that could lead to HIV remission without ART. Here we review the presentations that scrutinized the molecular mechanisms controlling virus expression from proviral DNA, and the intrinsic cellular restriction and immune mechanisms preventing viral production. Insights from the basic science have translated into new therapeutic strategies seeking HIV remission without ongoing therapy, and much interest was focused on these ongoing trials. We also summarise the emerging ethical issues and patient expectations as concepts move into the clinic.
doi:10.1186/1742-4690-10-134
PMCID: PMC3828479  PMID: 24224983
2.  Duration of HIV-1 Viral Suppression on Cessation of Antiretroviral Therapy in Primary Infection Correlates with Time on Therapy 
PLoS ONE  2013;8(10):e78287.
Objective
A minority of HIV-1 positive individuals treated with antiretroviral therapy (ART) in primary HIV-1 infection (PHI) maintain viral suppression on stopping. Whether this is related to ART duration has not been explored.
Design
And Methods: Using SPARTAC trial data from individuals recruited within 6 months of seroconversion, we present an observational analysis investigating whether duration of ART was associated with post-treatment viraemic control. Kaplan-Meier estimates, logistic regression and Cox models were used.
Results
165 participants reached plasma viral loads (VL) <400 copies/ml at the time of stopping therapy (ART stop). After ART stop, 159 experienced confirmed VL ≥400 copies/ml during median (IQR) follow-up of 167 (108,199) weeks.
Most participants experienced VL rebound within 12 weeks from ART stop, however, there was a suggestion of a higher probability of remaining <400 copies/ml for those on ART >12 weeks compared to ≤12 weeks (p=0.061). Cumulative probabilities of remaining <400 copies/ml at 12, 52 and 104 weeks after ART stop were 21% (95%CI=13,30), 4% (1,9), and 4% (1,9) for ≤12 weeks ART, and 32% (22,42), 14% (7,22), and 5% (2,11) for >12 weeks.
In multivariable regression, ART for >12 weeks was independently associated with a lower probability of being ≥400 copies/ml within 12 weeks of ART stop (OR=0.11 (95%CI=0.03,0.34), p<0.001)). In Cox models of time to VL ≥400 after 12 weeks, we only found an association with female sex (OR=0.2, p=0.001).
Conclusion
Longer ART duration in PHI was associated with a higher probability of viral control after ART stop.
Trial Registration
Controlled-Trials.com 76742797 http://www.controlled-trials.com/ISRCTN76742797.
doi:10.1371/journal.pone.0078287
PMCID: PMC3808338  PMID: 24205183
3.  HLA-A*7401–Mediated Control of HIV Viremia Is Independent of Its Linkage Disequilibrium with HLA-B*5703 
The potential contribution of HLA-A alleles to viremic control in chronic HIV type 1 (HIV-1) infection has been relatively understudied compared with HLA-B. In these studies, we show that HLA-A*7401 is associated with favorable viremic control in extended southern African cohorts of >2100 C-clade–infected subjects. We present evidence that HLA-A*7401 operates an effect that is independent of HLA-B*5703, with which it is in linkage disequilibrium in some populations, to mediate lowered viremia. We describe a novel statistical approach to detecting additive effects between class I alleles in control of HIV-1 disease, highlighting improved viremic control in subjects with HLA-A*7401 combined with HLA-B*57. In common with HLA-B alleles that are associated with effective control of viremia, HLA-A*7401 presents highly targeted epitopes in several proteins, including Gag, Pol, Rev, and Nef, of which the Gag epitopes appear immunodominant. We identify eight novel putative HLA-A*7401–restricted epitopes, of which three have been defined to the optimal epitope. In common with HLA-B alleles linked with slow progression, viremic control through an HLA-A*7401–restricted response appears to be associated with the selection of escape mutants within Gag epitopes that reduce viral replicative capacity. These studies highlight the potentially important contribution of an HLA-A allele to immune control of HIV infection, which may have been concealed by a stronger effect mediated by an HLA-B allele with which it is in linkage disequilibrium. In addition, these studies identify a factor contributing to different HIV disease outcomes in individuals expressing HLA-B*5703.
doi:10.4049/jimmunol.1003711
PMCID: PMC3738002  PMID: 21498667
4.  Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity 
The latent HIV-1 reservoir remains the major barrier to HIV-1 eradication. Although successful at limiting HIV replication, highly active antiretroviral therapy is unable to cure HIV infection, thus novel therapeutic strategies are needed to eliminate the virus. Magnetic field hyperthermia (MFH) generates thermoablative cytotoxic temperatures in target-cell populations, and has delivered promising outcomes in animal models, as well as in several cancer clinical trials. MFH has been proposed as a strategy to improve the killing of HIV-infected cells and for targeting the HIV latent reservoirs. We wished to determine whether MFH could be used to enhance cytotoxic T-lymphocyte (CTL) targeting of HIV-infected cells in a proof-of-concept study. Here, for the first time, we apply MFH to an infectious disease (HIV-1) using the superparamagnetic iron oxide nanoparticle FeraSpin R. We attempt to improve the cytotoxic potential of T-cell receptor-transfected HIV-specific CTLs using thermotherapy, and assess superparamagnetic iron oxide nanoparticle toxicity, uptake, and effect on cell function using more sensitive methods than previously described. FeraSpin R exhibited only limited toxicity, demonstrated efficient uptake and cell-surface attachment, and only modestly impacted T-cell function. In contrast to the cancer models, insufficient MFH was generated to enhance CTL killing of HIV-infected cells. MFH remains an exciting new technology in the field of cancer therapeutics, which, as technology improves, may have significant potential to enhance CTL function and act as an adjunctive therapy in the eradication of latently infected HIV-positive cells.
doi:10.2147/IJN.S44013
PMCID: PMC3726440  PMID: 23901272
nanoparticles; HIV-1; thermotherapy; cytotoxic T-cell
5.  Integrating genealogical and dynamical modelling to infer escape and reversion rates in HIV epitopes 
The rates of escape and reversion in response to selection pressure arising from the host immune system, notably the cytotoxic T-lymphocyte (CTL) response, are key factors determining the evolution of HIV. Existing methods for estimating these parameters from cross-sectional population data using ordinary differential equations (ODEs) ignore information about the genealogy of sampled HIV sequences, which has the potential to cause systematic bias and overestimate certainty. Here, we describe an integrated approach, validated through extensive simulations, which combines genealogical inference and epidemiological modelling, to estimate rates of CTL escape and reversion in HIV epitopes. We show that there is substantial uncertainty about rates of viral escape and reversion from cross-sectional data, which arises from the inherent stochasticity in the evolutionary process. By application to empirical data, we find that point estimates of rates from a previously published ODE model and the integrated approach presented here are often similar, but can also differ several-fold depending on the structure of the genealogy. The model-based approach we apply provides a framework for the statistical analysis and hypothesis testing of escape and reversion in population data and highlights the need for longitudinal and denser cross-sectional sampling to enable accurate estimate of these key parameters.
doi:10.1098/rspb.2013.0696
PMCID: PMC3673055  PMID: 23677344
phylodynamics; HIV; escape; genealogy; peeling; cytotoxic T-lymphocyte
6.  Acute EBV infection masquerading as "In-situ Follicular Lymphoma": a pitfall in the differential diagnosis of this entity 
Diagnostic Pathology  2013;8:100.
We present the case of a 30 year-old man who was referred for evaluation of diffuse lymphadenopathy. Six weeks prior, he noticed darkening of his urine associated with pale stools, nausea and an eventual 30 lb weight loss within a month. The initial laboratory findings showed elevation of the liver enzymes. A CT scan showed mesenteric and periaortic lymphadenopathy with the largest lymph node measuring 2.8 cm. Other laboratory results were otherwise unremarkable (including a normal LDH) with the exception of positive serum antibodies against Epstein-Barr virus (EBV) associated antigens (IgM+ and IgG+). An excisional biopsy of 4 of the small neck lymph nodes showed a normal architecture with prominent follicles and an intact capsule. But, by immunohistochemistry two of the follicles showed aberrant coexpression of BCL-2, in addition to CD10 and BCL-6. In-situ hybridization for early Epstein-Barr virus mRNA (EBER) and immunohistochemistry for latent membrane protein-1 (LMP-1) stained both scattered positive cells, as well as BCL-2 positive B-cells. Although an original diagnosis of in-situ follicular lymphoma was favored at an outside facility, additional interphase fluorescence in situ hybridization (FISH) studies for t(14;18);(IGH-BCL2) rearrangement (performed on the BCL-2 + follicles microdissected from the tissue block; Abott probe dual colour fusion) and molecular studies (IGH gene rearrangement by PCR, also performed on the microdissected follicles) were negative. Serologic studies (positive EBV antibodies) and immunostains in conjunction with the molecular studies confirmed the reactive nature of the changes. Our case also shows direct immunopathogenic evidence of BCL-2 expression among the EBV-infected cells, which has to our knowledge not been previously documented in vivo. A diagnosis of EBV infection should, therefore, be considered when confronted with BCL-2 expression in germinal centers, particularly in younger individuals, as the diagnosis of FLIS may lead to extensive and invasive haematologic work-ups.
Virtual slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1323656318940068
doi:10.1186/1746-1596-8-100
PMCID: PMC3874606  PMID: 23782909
7.  HIV Control through a Single Nucleotide on the HLA-B Locus 
Journal of Virology  2012;86(21):11493-11500.
Genetic variation within the HLA-B locus has the strongest impact on HIV disease progression of any polymorphisms within the human genome. However, identifying the exact mechanism involved is complicated by several factors. HLA-Bw4 alleles provide ligands for NK cells and for CD8 T cells, and strong linkage disequilibrium between HLA class I alleles complicates the discrimination of individual HLA allelic effects from those of other HLA and non-HLA alleles on the same haplotype. Here, we exploit an experiment of nature involving two recently diverged HLA alleles, HLA-B*42:01 and HLA-B*42:02, which differ by only a single amino acid. Crucially, they occur primarily on identical HLA class I haplotypes and, as Bw6 alleles, do not act as NK cell ligands and are therefore largely unconfounded by other genetic factors. We show that in an outbred cohort (n = 2,093) of HIV C-clade-infected individuals, a single amino acid change at position 9 of the HLA-B molecule critically affects peptide binding and significantly alters the cytotoxic T lymphocyte (CTL) epitopes targeted, measured directly ex vivo by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay (P = 2 × 10−10) and functionally through CTL escape mutation (P = 2 × 10−8). HLA-B*42:01, which presents multiple Gag epitopes, is associated with a 0.52 log10 lower viral-load set point than HLA-B*42:02 (P = 0.02), which presents no p24 Gag epitopes. The magnitude of this effect from a single amino acid difference in the HLA-A*30:01/B*42/Cw*17:01 haplotype is equivalent to 75% of that of HLA-B*57:03, the most protective HLA class I allele in this population. This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of a particular HIV-specific CTL on disease control.
doi:10.1128/JVI.01020-12
PMCID: PMC3486337  PMID: 22896606
8.  Co-Operative Additive Effects between HLA Alleles in Control of HIV-1 
PLoS ONE  2012;7(10):e47799.
Background
HLA class I genotype is a major determinant of the outcome of HIV infection, and the impact of certain alleles on HIV disease outcome is well studied. Recent studies have demonstrated that certain HLA class I alleles that are in linkage disequilibrium, such as HLA-A*74 and HLA-B*57, appear to function co-operatively to result in greater immune control of HIV than mediated by either single allele alone. We here investigate the extent to which HLA alleles - irrespective of linkage disequilibrium - function co-operatively.
Methodology/Principal Findings
We here refined a computational approach to the analysis of >2000 subjects infected with C-clade HIV first to discern the individual effect of each allele on disease control, and second to identify pairs of alleles that mediate ‘co-operative additive’ effects, either to improve disease suppression or to contribute to immunological failure. We identified six pairs of HLA class I alleles that have a co-operative additive effect in mediating HIV disease control and four hazardous pairs of alleles that, occurring together, are predictive of worse disease outcomes (q<0.05 in each case). We developed a novel ‘sharing score’ to quantify the breadth of CD8+ T cell responses made by pairs of HLA alleles across the HIV proteome, and used this to demonstrate that successful viraemic suppression correlates with breadth of unique CD8+ T cell responses (p = 0.03).
Conclusions/Significance
These results identify co-operative effects between HLA Class I alleles in the control of HIV-1 in an extended Southern African cohort, and underline complementarity and breadth of the CD8+ T cell targeting as one potential mechanism for this effect.
doi:10.1371/journal.pone.0047799
PMCID: PMC3477121  PMID: 23094091
9.  Virus Immune Evasion: New Mechanism and Implications in Disease Outcome 
Advances in Virology  2012;2012:490549.
doi:10.1155/2012/490549
PMCID: PMC3462381  PMID: 23049554
10.  Clonal Architecture of Secondary Acute Myeloid Leukemia 
The New England Journal of Medicine  2012;366(12):1090-1098.
BACKGROUND
The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood.
METHODS
We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations.
RESULTS
Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene.
CONCLUSIONS
Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.)
doi:10.1056/NEJMoa1106968
PMCID: PMC3320218  PMID: 22417201
11.  Cytotoxic T-Lymphocyte Escape Mutations Identified by HLA Association Favor Those Which Escape and Revert Rapidly 
Journal of Virology  2012;86(16):8568-8580.
Identifying human immunodeficiency virus (HIV) immune escape mutations has implications for understanding the impact of host immunity on pathogen evolution and guiding the choice of vaccine antigens. One means of identifying cytotoxic-T-lymphocyte (CTL) escape mutations is to search for statistical associations between mutations and host human leukocyte antigen (HLA) class I alleles at the population level. The impact of evolutionary rates on the strength of such associations is not well defined. Here, we address this topic using a mathematical model of within-host evolution and between-host transmission of CTL escape mutants that predicts the prevalence of escape mutants at the population level. We ask how the rates at which an escape mutation emerges in a host who bears the restricting HLA and reverts when transmitted to a host who does not bear the HLA affect the strength of an association. We consider the impact of these factors when using a standard statistical method to test for an association and when using an adaptation of that method that corrects for phylogenetic relationships. We show that with both methods, the average sample size required to identify an escape mutation is smaller if the mutation escapes and reverts quickly. Thus, escape mutations identified as HLA associated systematically favor those that escape and revert rapidly. We also present expressions that can be used to infer escape and reversion rates from cross-sectional escape prevalence data.
doi:10.1128/JVI.07020-11
PMCID: PMC3421756  PMID: 22674992
12.  RECURRENT MUTATIONS IN THE U2AF1 SPLICING FACTOR IN MYELODYSPLASTIC SYNDROMES 
Nature Genetics  2011;44(1):53-57.
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole genome sequencing to perform an unbiased comprehensive screen to discover all the somatic mutations in a sAML sample and genotyped these loci in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (S34) in U2AF1 was recurrently mutated in 13/150 (8.7%) de novo MDS patients, with suggestive evidence of an associated increased risk of progression to sAML. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3′ end of introns and mutations are located in highly conserved zinc fingers in U2AF11,2. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This novel, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.
doi:10.1038/ng.1031
PMCID: PMC3247063  PMID: 22158538
13.  Gastrointestinal lymphomas in a North American population: clinicopathologic features from one major Central-Midwestern United States tertiary care medical center 
Diagnostic Pathology  2012;7:76.
Background
Gastrointestinal (GI) lymphomas are very common types of extranodal lymphomas, and we hypothesize there are regional differences in subtype, distribution in the GI tract, and epidemiological features among the different populations.
Methods
We retrospectively evaluated the clinical, molecular and histologic features of North American primary and secondary GI lymphomas diagnosed from 2000–2009 seen at our institution. We utilized immunohistochemistry and fluorescence in situ hybridization to further evaluate a subset of the gastric lymphomas.
Results
Extranodal marginal zone lymphomas of mucosal associated lymphoid tissue (MALTs) and diffuse large B cell lymphomas (DLBCLs) were the most common subtypes of GI lymphomas. Select gastric DLBCLs (N = 6) and MALTs (N = 13) were further examined for API2-MALT1 and IGH translocations, and P16 and P53 protein expression. Gastric MALTs showed frequent API2-MALT1 (38%) but not IGH translocations (0%), and the DLBCLs showed neither translocation. Expression of P16 and P53 proteins and the proliferative index were compared between high grade gastric lymphomas (gastric DLBCLs) and low grade gastric lymphomas (gastric MALTs). P53 overexpression (P = 0.008) and a high proliferation index [Ki-67] (P = 0.00042) were significantly associated with gastric DLBCL, but no statistically significant difference was observed in P16 expression (p = 0.108) between gastric DLBCL and gastric MALT.
Conclusion
Our study revealed that GI lymphomas from a Central-Midwestern North American population showed differences and similarities to non-North American cohorts. In addition, API2-MALT1, P16 and P53 abnormalities occurred frequently in gastric lymphomas from this North American population.
Virtual slides
The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1415505838687793
doi:10.1186/1746-1596-7-76
PMCID: PMC3537672  PMID: 22742986
Gastrointestinal lymphoma; Secondary versus primary; Molecular features; Locations
14.  Widespread Impact of HLA Restriction on Immune Control and Escape Pathways of HIV-1 
Journal of Virology  2012;86(9):5230-5243.
The promiscuous presentation of epitopes by similar HLA class I alleles holds promise for a universal T-cell-based HIV-1 vaccine. However, in some instances, cytotoxic T lymphocytes (CTL) restricted by HLA alleles with similar or identical binding motifs are known to target epitopes at different frequencies, with different functional avidities and with different apparent clinical outcomes. Such differences may be illuminated by the association of similar HLA alleles with distinctive escape pathways. Using a novel computational method featuring phylogenetically corrected odds ratios, we systematically analyzed differential patterns of immune escape across all optimally defined epitopes in Gag, Pol, and Nef in 2,126 HIV-1 clade C-infected adults. Overall, we identified 301 polymorphisms in 90 epitopes associated with HLA alleles belonging to shared supertypes. We detected differential escape in 37 of 38 epitopes restricted by more than one allele, which included 278 instances of differential escape at the polymorphism level. The majority (66 to 97%) of these resulted from the selection of unique HLA-specific polymorphisms rather than differential epitope targeting rates, as confirmed by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISPOT) data. Discordant associations between HLA alleles and viral load were frequently observed between allele pairs that selected for differential escape. Furthermore, the total number of associated polymorphisms strongly correlated with average viral load. These studies confirm that differential escape is a widespread phenomenon and may be the norm when two alleles present the same epitope. Given the clinical correlates of immune escape, such heterogeneity suggests that certain epitopes will lead to discordant outcomes if applied universally in a vaccine.
doi:10.1128/JVI.06728-11
PMCID: PMC3347390  PMID: 22379086
15.  Adaptation of HIV-1 to human leukocyte antigen class I 
Nature  2009;458(7238):641-645.
The rapid and extensive spread of the human immunodeficiency virus (HIV) epidemic provides a rare opportunity to witness host–pathogen co-evolution involving humans. A focal point is the interaction between genes encoding human leukocyte antigen (HLA) and those encoding HIV proteins. HLA molecules present fragments (epitopes) of HIV proteins on the surface of infected cells to enable immune recognition and killing by CD8+ T cells; particular HLA molecules, such as HLA-B*57, HLA-B*27 and HLA-B*51, are more likely to mediate successful control of HIV infection1. Mutation within these epitopes can allow viral escape from CD8+ T-cell recognition. Here we analysed viral sequences and HLA alleles from >2,800 subjects, drawn from 9 distinct study cohorts spanning 5 continents. Initial analysis of the HLA-B*51-restricted epitope, TAFTIPSI (reverse transcriptase residues 128–135), showed a strong correlation between the frequency of the escape mutation I135X and HLA-B*51 prevalence in the 9 study cohorts (P = 0.0001). Extending these analyses to incorporate other well-defined CD8+ T-cell epitopes, including those restricted by HLA-B*57 and HLA-B*27, showed that the frequency of these epitope variants (n = 14) was consistently correlated with the prevalence of the restricting HLA allele in the different cohorts (together, P < 0.0001), demonstrating strong evidence of HIV adaptation to HLA at a population level. This process of viral adaptation may dismantle the well-established HLA associations with control of HIV infection that are linked to the availability of key epitopes, and highlights the challenge for a vaccine to keep pace with the changing immunological landscape presented by HIV.
doi:10.1038/nature07746
PMCID: PMC3148020  PMID: 19242411
16.  Phylogenetic analysis consistent with a clinical history of sexual transmission of HIV-1 from a single donor reveals transmission of highly distinct variants 
Retrovirology  2011;8:54.
Background
To combat the pandemic of human immunodeficiency virus 1 (HIV-1), a successful vaccine will need to cope with the variability of transmissible viruses. Human hosts infected with HIV-1 potentially harbour many viral variants but very little is known about viruses that are likely to be transmitted, or even if there are viral characteristics that predict enhanced transmission in vivo. We show for the first time that genetic divergence consistent with a single transmission event in vivo can represent several years of pre-transmission evolution.
Results
We describe a highly unusual case consistent with a single donor transmitting highly related but distinct HIV-1 variants to two individuals on the same evening. We confirm that the clustering of viral genetic sequences, present within each recipient, is consistent with the history of a single donor across the viral env, gag and pol genes by maximum likelihood and Bayesian Markov Chain Monte Carlo based phylogenetic analyses. Based on an uncorrelated, lognormal relaxed clock of env gene evolution calibrated with other datasets, the time since the most recent common ancestor is estimated as 2.86 years prior to transmission (95% confidence interval 1.28 to 4.54 years).
Conclusion
Our results show that an effective design for a preventative vaccine will need to anticipate extensive HIV-1 diversity within an individual donor as well as diversity at the population level.
doi:10.1186/1742-4690-8-54
PMCID: PMC3161944  PMID: 21736738
17.  Progression to AIDS in South Africa Is Associated with both Reverting and Compensatory Viral Mutations 
PLoS ONE  2011;6(4):e19018.
We lack the understanding of why HIV-infected individuals in South Africa progress to AIDS. We hypothesised that in end-stage disease there is a shifting dynamic between T cell imposed immunity and viral immune escape, which, through both compensatory and reverting viral mutations, results in increased viral fitness, elevated plasma viral loads and disease progression. We explored how T cell responses, viral adaptation and viral fitness inter-relate in South African cohorts recruited from Bloemfontein, the Free State (n = 278) and Durban, KwaZulu-Natal (n = 775). Immune responses were measured by γ-interferon ELISPOT assays. HLA-associated viral polymorphisms were determined using phylogenetically corrected techniques, and viral replication capacity (VRC) was measured by comparing the growth rate of gag-protease recombinant viruses against recombinant NL4-3 viruses. We report that in advanced disease (CD4 counts <100 cells/µl), T cell responses narrow, with a relative decline in Gag-directed responses (p<0.0001). This is associated with preserved selection pressure at specific viral amino acids (e.g., the T242N polymorphism within the HLA-B*57/5801 restricted TW10 epitope), but with reversion at other sites (e.g., the T186S polymorphism within the HLA-B*8101 restricted TL9 epitope), most notably in Gag and suggestive of “immune relaxation”. The median VRC from patients with CD4 counts <100 cells/µl was higher than from patients with CD4 counts ≥500 cells/µl (91.15% versus 85.19%, p = 0.0004), potentially explaining the rise in viral load associated with disease progression. Mutations at HIV Gag T186S and T242N reduced VRC, however, in advanced disease only the T242N mutants demonstrated increasing VRC, and were associated with compensatory mutations (p = 0.013). These data provide novel insights into the mechanisms of HIV disease progression in South Africa. Restoration of fitness correlates with loss of viral control in late disease, with evidence for both preserved and relaxed selection pressure across the HIV genome. Interventions that maintain viral fitness costs could potentially slow progression.
doi:10.1371/journal.pone.0019018
PMCID: PMC3081339  PMID: 21544209
18.  Modelling the Evolution and Spread of HIV Immune Escape Mutants 
PLoS Pathogens  2010;6(11):e1001196.
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Author Summary
HIV evolves so quickly that it can be seen to adapt within one infected person. Evolutionary escape from immunity is particularly well-described. Escape variants transmit to new hosts, where they may revert. We present a mathematical model of three processes: within-host evolution of escape mutants, transmission of those variants between hosts and subsequent reversion in new hosts. Using this model we reconcile diverse datasets on HIV immune escape, highlighting where multiple data sources agree or disagree on the underlying rate processes. The several-dozen immune epitopes we survey reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. Although there are frequent reports in the literature of early and rapid within-host evolution of HIV, for many epitopes this is not reflected in fast evolution at the population level.
doi:10.1371/journal.ppat.1001196
PMCID: PMC2987822  PMID: 21124991
19.  Integrated Genomic Analysis Implicates Haploinsufficiency of Multiple Chromosome 5q31.2 Genes in De Novo Myelodysplastic Syndromes Pathogenesis 
PLoS ONE  2009;4(2):e4583.
Deletions spanning chromosome 5q31.2 are among the most common recurring cytogenetic abnormalities detectable in myelodysplastic syndromes (MDS). Prior genomic studies have suggested that haploinsufficiency of multiple 5q31.2 genes may contribute to MDS pathogenesis. However, this hypothesis has never been formally tested. Therefore, we designed this study to systematically and comprehensively evaluate all 28 chromosome 5q31.2 genes and directly test whether haploinsufficiency of a single 5q31.2 gene may result from a heterozygous nucleotide mutation or microdeletion. We selected paired tumor (bone marrow) and germline (skin) DNA samples from 46 de novo MDS patients (37 without a cytogenetic 5q31.2 deletion) and performed total exonic gene resequencing (479 amplicons) and array comparative genomic hybridization (CGH). We found no somatic nucleotide changes in the 46 MDS samples, and no cytogenetically silent 5q31.2 deletions in 20/20 samples analyzed by array CGH. Twelve novel single nucleotide polymorphisms were discovered. The mRNA levels of 7 genes in the commonly deleted interval were reduced by 50% in CD34+ cells from del(5q) MDS samples, and no gene showed complete loss of expression. Taken together, these data show that small deletions and/or point mutations in individual 5q31.2 genes are not common events in MDS, and implicate haploinsufficiency of multiple genes as the relevant genetic consequence of this common deletion.
doi:10.1371/journal.pone.0004583
PMCID: PMC2642994  PMID: 19240791
20.  Secondary Lymphoma Involving Metastatic Follicular Thyroid Carcinoma to the Skull: A Unique Example of Tumor-to-Tumor Metastasis 
Head and Neck Pathology  2008;2(3):209-212.
Tumor-to-tumor metastases to the skull, presenting as a scalp mass, and thyroid follicular carcinoma presenting in that location are extremely rare. We present the case of a patient with recently diagnosed retroperitoneal diffuse large B-cell lymphoma and an 8-year history of a non-tender large scalp-based mass. The scalp mass was an osteolytic enhancing lesion on imaging studies and diagnosed as metastatic thyroid carcinoma to the skull. The patient had no pre-existing history of thyroid cancer. This metastatic carcinoma was also secondarily involved with diffuse large B-cell lymphoma. This case illustrates a unique and previously unreported example of tumor-to-tumor metastasis in which both malignancies represent metastatic tumors to the skull with soft tissue extension presenting as a large scalp mass.
doi:10.1007/s12105-008-0051-8
PMCID: PMC2807566  PMID: 20614316
Thyroid follicular carcinoma; Thyroid carcinoma; Skull metastasis; Non-Hodgkin’s lymphoma; Large cell lymphoma; Tumor-to-tumor metastasis
21.  Dysregulated angiogenesis in B-chronic lymphocytic leukemia: Morphologic, immunohistochemical, and flow cytometric evidence 
Diagnostic Pathology  2008;3:16.
Background
The extent of enhanced bone marrow angiogenesis in chronic lymphocytic leukemia (CLL) and relationship to proangiogenic factors and prognostic indicators is largely unexplored.
Methods
To further investigate the role of angiogenesis in CLL by evaluating the topography and extent of angiogenesis in a group of CLL bone marrow biopsies, to study the expression of pro and antiangiogenic vascular factors in CLL cells to more precisely document the cell types producing these factors, and to evaluate the role, if any, of localized hypoxia in upregulation of angiogenesis in CLL We used immunohistochemistry (IHC) (n = 21 pts) with antibodies to CD3 and CD20, proangiogenic (VEGF, HIF-1a) and antiangiogenic (TSP-1) factors, and VEGF receptors -1 and -2 to examine pattern/extent of CLL marrow involvement, microvessel density (MVD), and angiogenic characteristics; flow cytometry (FC) was performed on 21 additional cases for VEGF and TSP-1.
Results
CLL patients had higher MVD (23.8 vs 14.6, p~0.0002) compared to controls (n = 10). MVD was highest at the periphery of focal infiltrates, was not enhanced in proliferation centers, and was increased irrespective of the presence or absence of cytogenetic/immunophenotypic markers of aggressivity. By IHC, CLL cells were VEGF(+), HIF-1a (+), TSP-1(-), VEGFR-1(+), and VEGFR-2(+). By FC, CLL cells were 1.4–2.0-fold brighter for VEGF than T cells and were TSP-1(-).
Conclusion
CLL demonstrates enhanced angiogenesis, with increased MVD, upregulated VEGF and downregulated TSP-1. Upregulation of HIF-1a in all CLL cases suggests localized tissue hypoxia as an important stimulant of microvessel proliferation. The presence of VEGF receptors on CLL cells implies an autocrine effect for VEGF. Differences in MVD did not correlate with traditional genetic/immunophenotypic markers of aggressiveness.
doi:10.1186/1746-1596-3-16
PMCID: PMC2362108  PMID: 18423023
22.  A transient benign lymph node-based proliferation of T-cells simulating non-Hodgkin lymphoma in a patient with psoriasis treated with tumor necrosis factor alpha and CD11a antagonists 
Diagnostic Pathology  2008;3:13.
Background
Therapeutic biologic agents are uncommonly associated with lymphoma.
Case presentation
We report a patient with psoriasis treated with the biologic agents efalizumab (Raptiva®) and etanercept (Enbrel®), who developed painless lymphadenopathy with peripheral lymphocytosis during treatment, simulating a non-Hodgkin lymphoma clinically and pathologically. Lymphocytosis and lymphadenopathy spontaneously remitted following cessation of etanercept therapy and have not recurred.
Conclusion
Distinction between clinically benign lymphoid proliferations related to antipsoriasis therapy and malignant lymphoma avoids the unnecessary use of anti-lymphoma chemotherapy.
doi:10.1186/1746-1596-3-13
PMCID: PMC2291032  PMID: 18366773
23.  Precise Identification of a Human Immunodeficiency Virus Type 1 Antigen Processing Mutant▿  
Journal of Virology  2006;81(4):2031-2038.
Human immunodeficiency virus type 1 (HIV-1) evokes a strong immune response, but the virus persists. Polymorphisms within known antigenic sites result in loss of immune recognition and can be positively selected. Amino acid variation outside known HLA class I restricted epitopes can also enable immune escape by interfering with the processing of the optimal peptide antigen. However, the lack of precise rules dictating epitope generation and the enormous genetic diversity of HIV make prediction of processing mutants very difficult. Polymorphism E169D in HIV-1 reverse transcriptase (RT) is significantly associated with HLA-B*0702 in HIV-1-infected individuals. This polymorphism does not map within a known HLA-B*0702 epitope; instead, it is located five residues downstream of a HLA-B*0702-restricted epitope SPAIFQSSM (SM9). Here we investigate the association between E169D and HLA-B*0702 for immune escape via the SM9 epitope. We show that this single amino acid variation prevents the immune recognition of the flanked SM9 epitope by cytotoxic T cells through lack of generation of the epitope, which is a result of aberrant proteasomal cleavage. The E169D polymorphism also maps within and abrogates the recognition of an HLA-A*03-restricted RT epitope MR9. This study highlights the potential for using known statistical associations as indicators for viral escape but also the complexity involved in interpreting the immunological consequences of amino acid changes in HIV sequences.
doi:10.1128/JVI.00968-06
PMCID: PMC1797578  PMID: 17108020

Results 1-24 (24)