PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  CCAAT Enhancer Binding Protein and Nuclear Factor of Activated T Cells Regulate HIV-1 LTR via a Novel Conserved Downstream Site in Cells of the Monocyte-Macrophage Lineage 
PLoS ONE  2014;9(2):e88116.
Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR. DS3 was found to be well represented in other subtypes as well. Interestingly, DS3 overlaps with a previously identified region that bind members of the nuclear factor of activated T cells (NFAT) family of proteins. NFATc2 exhibited a higher relative affinity for DS3 as compared with members of the C/EBP family (C/EBP α and β). DS3 was able to compete efficiently with the low-affinity upstream C/EBP binding site I with respect to C/EBP binding, suggesting utilization of both NFAT and C/EBP. Moreover, cyclosporine A treatment, which has been shown to prevent dephosphorylation and nuclear translocation of NFAT isoforms, resulted in enhanced C/EBPα binding. The interactions at DS3 were also validated in an integrated HIV-1 LTR in chronically infected U1 cells. A binding knockout of DS3 demonstrated reduced HIV-1 LTR-directed transcription under both basal and interleukin-6-stimulated conditions only in cells of the monocyte-macrophage lineage cells and not in cells of T-cell origin. Thus, the events at DS3 positively regulate the HIV-1 promoter in cells of the monocyte-macrophage lineage.
doi:10.1371/journal.pone.0088116
PMCID: PMC3925103  PMID: 24551078
2.  Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development 
The Journal of General Virology  2012;93(Pt 6):1151-1172.
Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte–macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein–protein and protein–DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.
doi:10.1099/vir.0.041186-0
PMCID: PMC3755519  PMID: 22422068
3.  Impact of Tat Genetic Variation on HIV-1 Disease 
Advances in Virology  2012;2012:123605.
The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcription factors have been examined. Genetic variation within tat of different HIV-1 subtypes has been shown to affect the interaction of the viral transactivator with cellular and/or viral proteins, influencing the overall level of transcriptional activation as well as its action as a neurotoxic protein. Consequently, the genetic variability within tat may impact the molecular architecture of functional domains of the Tat protein that may impact HIV pathogenesis and disease. Tat as a therapeutic target for anti-HIV drugs has also been discussed.
doi:10.1155/2012/123605
PMCID: PMC3414192  PMID: 22899925

Results 1-3 (3)