Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Alterations of the Myovesical Plexus of the Human Overactive Detrusor 
BioMed Research International  2014;2014:754596.
Objectives. The human bladder shows spontaneous autonomous activity. Detrusor overactivity could be seen as a consequence of exaggerated autonomous activity. Interstitial cells (ICs) play a potential role in coordination of autonomous activity. As it is suggested that changes in ICs coexist with detrusor overactivity (DO), we investigated possible alterations to human bladder ICs. Methods. Biopsies were obtained from 23 patients and were categorized into four groups: genuine stress incontinence (without DO) (n = 5), neurogenic disease with DO (n = 6), bladder outlet obstruction with DO (n = 6), or idiopathic DO (n = 6). Specimens were processed to investigate expression of N-cadherin and PGP9.5. N-cadherin expression was semiquantitatively analyzed and correlated to PG9.5 expression and bladder wall morphology. Results. The population of cells expressing N-cadherin is altered in the overactive detrusor, making no difference between the sources of DO. Punctate distribution of morphological changes was found and downregulation of PGP9.5 expression seemed to coexist with upregulation of N-cadherin expression in the detrusor layer. Conclusions. The population of N-cadherin+ cells of the interstitial compartment of the human bladder has the ability to proliferate. As this proliferation seems to coexist with denervation, it could be possible that a highly developed network of interstitial cells replaces the loss of innervation in overactive detrusor.
PMCID: PMC4009145  PMID: 24829917
2.  An Update of the Interstitial Cell Compartment in the Normal Human Bladder 
BioMed Research International  2014;2014:464217.
Aims. Interstitial cells, also called myofibroblasts, most probably play a major role in the pathogenesis of the overactive bladder. However, no specific phenotypic marker has been identified. We investigated whether N-cadherin could play a role as a discriminatory marker for interstitial cells in the human bladder. Methods. Bladder biopsies (n = 16) were collected from macroscopically nonpathological locations during cystectomy which was performed because of bladder cancer. Tissue was analyzed for expression of N-cadherin. N-cadherin+ cells were phenotyped using antibodies against PGP9.5, smoothelin, vimentin, and C-kit. Findings were related to bladder tissue histology and ultrastructure of myofibroblastic cells. Results. N-cadherin+/vimentin+ cells with branched cell bodies were found in the lamina propria and detrusor layer. They were closely associated with neurons and showed no colocalization of PGP9.5 or smoothelin. A second type of N-cadherin+ cells was found at the boundary of detrusor bundles and in the lamina propria. These cells colocalization C-kit. We assumed that N-cadherin+/vimentin+ cells are similar to the ultrastructurally defined myofibroblasts. Conclusions. N-cadherin can play a role as a discriminatory marker for interstitial cells in the human bladder, as the interstitial compartment of the human bladder houses a population of cells from mesenchymal origin, immunopositive for N-cadherin, vimentin, and C-kit.
PMCID: PMC3955678  PMID: 24719868
3.  Value of PCA3 to Predict Biopsy Outcome and Its Potential Role in Selecting Patients for Multiparametric MRI 
PCA3 (prostate cancer gene 3) and multiparametric 3 tesla MRI are new promising diagnostic tools in the detection of PCa. Our aim was to study the clinical value of the Progensa PCA3-test: its predictive value for biopsy outcome, Gleason score and MRI outcome. We evaluated, retrospectively, 591 patients who underwent a Progensa PCA3-test at the Radboud University Nijmegen Medical Centre between May 2006 and December 2009. Prostate biopsies were performed in 290 patients; a multiparametric 3 tesla MRI of the prostate was performed in 163/591 patients. The PCA3-score was correlated to biopsy results and MRI outcome. The results show that PCA3 was highly predictive for biopsy outcome (p < 0.001); there was no correlation with the Gleason score upon biopsy (p = 0.194). The PCA3-score of patients with a suspicious region for PCa on MRI was significantly higher (p < 0.001) than in patients with no suspicious region on MRI (52 vs. 21). In conclusion, PCA3 is a valuable diagnostic biomarker for PCa; it did not correlate with the Gleason score. Furthermore, multiparametric MRI outcome was significantly correlated with the PCA3-score. Thus, PCA3 could be used to select patients that require MRI. However, in patients with a negative PCA3 and high clinical suspicion of PCa, a multiparametric MRI should also be done.
PMCID: PMC3709735  PMID: 23759986
prostate cancer; PCA3; MRI
4.  Urinary biomarkers for prostate cancer: a review 
Asian Journal of Andrology  2013;15(3):333-339.
Although the routine use of serum prostate-specific antigen (PSA) testing has undoubtedly increased prostate cancer (PCa) detection, one of its main drawbacks is its lack of specificity. As a consequence, many men undergo unnecessary biopsies or treatments for indolent tumours. PCa-specific markers are needed for the early detection of the disease and the prediction of aggressiveness of a prostate tumour. Since PCa is a heterogeneous disease, a panel of tumour markers is fundamental for a more precise diagnosis. Several biomarkers are promising due to their specificity for the disease in tissue. However, tissue is unsuitable as a possible screening tool. Since urine can be easily obtained in a non-invasive manner, it is a promising substrate for biomarker testing. This article reviews the biomarkers for the non-invasive testing of PCa in urine.
PMCID: PMC3739649  PMID: 23524531
biomarkers; diagnosis; prostate cancer (PCa); urinary biomarkers; urine
5.  Genetic correction of PSA values using sequence variants associated with PSA levels 
Science translational medicine  2010;2(62):62ra92.
Measuring serum levels of the prostate specific antigen (PSA) is the most common screening method for prostate cancer. However, PSA levels are affected by a number of factors apart from neoplasia. Notably, around 40% of the variability of PSA levels in the general population is accounted for by inherited factors, suggesting that it may be possible to improve both sensitivity and specificity by adjusting test results for genetic effects. In order to search for sequence variants that associate with PSA levels, we performed a genome-wide association study and follow-up analysis using PSA information from 15,757 Icelandic and 454 British men not diagnosed with prostate cancer. Overall, we detected a genome-wide significant association between PSA levels and SNPs at six loci: 5p15.33 (rs2736098), 10q11 (rs10993994), 10q26 (rs10788160), 12q24 (rs11067228), 17q12 (rs4430796), and 19q13.33 (rs17632542 (KLK3: I179T), each with Pcombined < 3×10−10. Among 3,834 men who underwent a biopsy of the prostate, the 10q26, 12q24, and 19q13.33 alleles that associate with high PSA levels are associated with higher probability of a negative biopsy (OR between 1.15 and 1.27). Assessment of association between the 6 loci and prostate cancer risk in 5,325 cases and 41,417 controls from Iceland, the Netherlands, Spain, Romania, and the US showed that the SNPs at 10q26 and 12q24 were exclusively associated with PSA levels, whereas the other 4 loci also were associated with prostate cancer risk. We propose that a personalized PSA cutoff value, based on genotype, should be used when deciding to perform a prostate biopsy.
PMCID: PMC3564581  PMID: 21160077
6.  Personalized Management in Low-Risk Prostate Cancer: The Role of Biomarkers 
Prostate Cancer  2012;2012:327104.
Current criteria to predict low-risk prostate cancer (PCa) are still subject to discussion as a substantial number of PCa patients who progress to a more aggressive disease seem to be missed, using these criteria. The main challenge in PCa diagnosis, therefore, is to distinguish patients with low-risk PCa who will show slow progression of disease from patients at risk for progression to a more aggressive cancer. The current discovered biomarkers could potentially guide in this management and improve detection, staging, and prognosis. This paper provides an overview of the current available serum-, urine-, and tissue-based biomarkers in PCa and evaluates the clinical usefulness of these biomarkers in the detection and management of low-risk PCa.
PMCID: PMC3532864  PMID: 23304520
7.  Tubulin Tyrosine Ligase Like 12, a TTLL Family Member with SET- and TTL-Like Domains and Roles in Histone and Tubulin Modifications and Mitosis 
PLoS ONE  2012;7(12):e51258.
hTTLL12 is a member of the tubulin tyrosine ligase (TTL) family that is highly conserved in phylogeny. It has both SET-like and TTL-like domains, suggesting that it could have histone methylation and tubulin tyrosine ligase activities. Altered expression of hTTLL12 in human cells leads to specific changes in H4K20 trimethylation, and tubulin detyrosination, hTTLL12 does not catalyse histone methylation or tubulin tyrosination in vitro, as might be expected from the lack of critical amino acids in its SET-like and TTLL-like domains. hTTLL12 misexpression increases mitotic duration and chromosome numbers. These results suggest that hTTLL12 has non-catalytic functions related to tubulin and histone modification, which could be linked to its effects on mitosis and chromosome number stability.
PMCID: PMC3520985  PMID: 23251473
8.  Aldo-keto Reductase Family 1 Member C3 (AKR1C3) Is a Biomarker and Therapeutic Target for Castration-Resistant Prostate Cancer 
Molecular Medicine  2012;18(1):1449-1455.
Current endocrine treatment for advanced prostate cancer does not result in a complete ablation of adrenal androgens. Adrenal androgens can be metabolized by prostate cancer cells, which is one of the mechanisms associated with progression to castration-resistant prostate cancer (CRPC). Aldo-keto reductase family 1 member C3 (AKR1C3) is a steroidogenic enzyme that plays a crucial role in the conversion of adrenal androgen dehydroepiandrosterone (DHEA) into high-affinity ligands for the androgen receptor (testosterone [T] and dihydrotestosterone [DHT]). The aim of this study was to examine whether AKR1C3 could be used as a marker and therapeutic target for CRPC. AKR1C3 mRNA and protein levels were upregulated in CRPC tissue, compared with benign prostate and primary prostate cancer tissue. High AKR1C3 levels were found only in a subset of CRPC patients. AKR1C3 can be used as a biomarker for active intratumoral steroidogenesis and can be measured in biopsy or transurethral resection of the prostate specimens. DuCaP (a CRPC cell line that has high AKR1C3 expression levels) used and converted DHEA under hormone-depleted conditions into T and DHT. The DHEA-induced growth of DuCaP could be antagonized by indomethacine, an inhibitor of AKR1C3. This study indicates that AKR1C3 can be considered a therapeutic target in a subgroup of patients with high AKR1C3 expression.
PMCID: PMC3563708  PMID: 23196782
9.  A germline variant in the TP53 polyadenylation signal confers cancer susceptibility 
Stacey, Simon N | Sulem, Patrick | Jonasdottir, Aslaug | Masson, Gisli | Gudmundsson, Julius | Gudbjartsson, Daniel F | Magnusson, Olafur T | Gudjonsson, Sigurjon A | Sigurgeirsson, Bardur | Thorisdottir, Kristin | Ragnarsson, Rafn | Benediktsdottir, Kristrun R | Nexø, Bjørn A | Tjønneland, Anne | Overvad, Kim | Rudnai, Peter | Gurzau, Eugene | Koppova, Kvetoslava | Hemminki, Kari | Corredera, Cristina | Fuentelsaz, Victoria | Grasa, Pilar | Navarrete, Sebastian | Fuertes, Fernando | García-Prats, Maria D | Sanambrosio, Enrique | Panadero, Angeles | De Juan, Ana | Garcia, Almudena | Rivera, Fernando | Planelles, Dolores | Soriano, Virtudes | Requena, Celia | Aben, Katja K | van Rossum, Michelle M | Cremers, Ruben G H M | van Oort, Inge M | van Spronsen, Dick-Johan | Schalken, Jack A | Peters, Wilbert H M | Helfand, Brian T | Donovan, Jenny L | Hamdy, Freddie C | Badescu, Daniel | Codreanu, Ovidiu | Jinga, Mariana | Csiki, Irma E | Constantinescu, Vali | Badea, Paula | Mates, Ioan N | Dinu, Daniela E | Constantin, Adrian | Mates, Dana | Kristjansdottir, Sjofn | Agnarsson, Bjarni A | Jonsson, Eirikur | Barkardottir, Rosa B | Einarsson, Gudmundur V | Sigurdsson, Fridbjorn | Moller, Pall H | Stefansson, Tryggvi | Valdimarsson, Trausti | Johannsson, Oskar T | Sigurdsson, Helgi | Jonsson, Thorvaldur | Jonasson, Jon G | Tryggvadottir, Laufey | Rice, Terri | Hansen, Helen M | Xiao, Yuanyuan | Lachance, Daniel H | O’Neill, Brian Patrick | Kosel, Matthew L | Decker, Paul A | Thorleifsson, Gudmar | Johannsdottir, Hrefna | Helgadottir, Hafdis T | Sigurdsson, Asgeir | Steinthorsdottir, Valgerdur | Lindblom, Annika | Sandler, Robert S | Keku, Temitope O | Banasik, Karina | Jørgensen, Torben | Witte, Daniel R | Hansen, Torben | Pedersen, Oluf | Jinga, Viorel | Neal, David E | Catalona, William J | Wrensch, Margaret | Wiencke, John | Jenkins, Robert B | Nagore, Eduardo | Vogel, Ulla | Kiemeney, Lambertus A | Kumar, Rajiv | Mayordomo, José I | Olafsson, Jon H | Kong, Augustine | Thorsteinsdottir, Unnur | Rafnar, Thorunn | Stefansson, Kari
Nature Genetics  2011;43(11):1098-1103.
To identify new risk variants for cutaneous basal cell carcinoma, we performed a genome-wide association study of 16 million SNPs identified through whole-genome sequencing of 457 Icelanders. We imputed genotypes for 41,675 Illumina SNP chip-typed Icelanders and their relatives. In the discovery phase, the strongest signal came from rs78378222[C] (odds ratio (OR) = 2.36, P = 5.2 × 10−17), which has a frequency of 0.0192 in the Icelandic population. We then confirmed this association in non-Icelandic samples (OR = 1.75, P = 0.0060; overall OR = 2.16, P = 2.2 × 10−20). rs78378222 is in the 3′ untranslated region of TP53 and changes the AATAAA polyadenylation signal to AATACA, resulting in impaired 3′-end processing of TP53 mRNA. Investigation of other tumor types identified associations of this SNP with prostate cancer (OR = 1.44, P = 2.4 × 10−6), glioma (OR = 2.35, P = 1.0 × 10−5) and colorectal adenoma (OR = 1.39, P = 1.6 × 10−4). However, we observed no effect for breast cancer, a common Li-Fraumeni syndrome tumor (OR = 1.06, P = 0.57, 95% confidence interval 0.88–1.27).
PMCID: PMC3263694  PMID: 21946351
12.  Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant 
Prostate cancer is the most commonly diagnosed cancer in men in Europe and Northern America. Genome-wide association studies (GWAS) have detected an association with markers on chromosome 8q24. Allele -8 of microsatellite DG8S737 with 22 repeats and allele A of the single-nucleotide polymorphism (SNP) rs1447295 have been found to be significantly associated with prostate cancer. As GWAS are subjected to type 1 error, confirmation studies are required to validate the results. Here, we analysed the same markers in 277 cases and 282 controls from the Netherlands using a nested case–control study. Incident prostate cancer cases and controls selected were identified in the population of the Netherlands Cohort Study. We also investigated clinical features of the disease by stratifying by tumour stage. We did not replicate the association with the SNP rs1447295-A allele (P=0.10), although the effect estimate was in the same direction as previous studies (odds ratio (OR), 1.38). Interestingly a statistically significant decreased risk was observed for DG8S737 allele -8 (OR, 0.62; P=0.03). The apparent protective effect of the DG8S737 -8 allele observed in this study contrasts with the Amundadottir study. This suggests that DG8S737 and rs1447295 might be tightly linked markers flanking the actual causative variant and that there may be potentially more than one high-risk haplotype present in the Caucasian population. This short report highlights the importance of validation, although further confirmation is still needed.
PMCID: PMC3039500  PMID: 20700145
epidemiology; microsatellite repeats/genetics; SNP; prostatic neoplasm/genetics; cancer
13.  How accurate is our prediction of biopsy outcome? PCA3-based nomograms in personalized diagnosis of prostate cancer 
The sensitivity and specificity of prostate-specific antigen (PSA) alone to select men for prostate biopsy remain suboptimal. This review aims at presenting a review of current prostate cancer (PCa) nomograms that incorporate Prostate Cancer Gene 3 (PCA3), which was designed to outperform PSA at predicting biopsy outcome.
Materials and methods
The PubMed database and current literature search was conducted for reports on PCA3-based nomograms and tools for examining the risk of a positive prostate biopsy in a man without a known PCa diagnosis.
Results and conclusions
The introduction of PCA3 into clinical practice has led to the development of a set of PCA3-based nomograms to predict biopsy outcome. Combining PCA3 results with established PCa risk factors has produced significant improvements over PSA alone in predicting the risk of a positive prostate biopsy for cancer.
PMCID: PMC3921800  PMID: 24578943
prostate; prostatic neoplasms; diagnosis; nomogram; prostate cancer antigen
14.  Steroidogenic Enzymes and Stem Cell Markers Are Upregulated during Androgen Deprivation in Prostate Cancer 
Molecular Medicine  2011;17(7-8):657-664.
Considerable levels of testosterone and dihydrotestosterone (DHT) are found in prostate cancer (PCa) tissue after androgen deprivation therapy. Treatment of surviving cancer-initiating cells and the ability to metabolize steroids from precursors may be the keystones for the appearance of recurrent tumors. To study this hypothesis, we assessed the expression of several steroidogenic enzymes and stem cell markers in clinical PCa samples and cell cultures during androgen depletion. Gene expression profiles were determined by microarray or qRT-PCR. In addition, we measured cell viability and analyzed stem cell marker expression in DuCaP cells by immunocytochemistry. Seventy patient samples from different stages of PCa, and the PCa cell line DuCaP were included in this study. The androgen receptor (AR) and enzymes (AKR1C3, HSD17B2, HSD17B3, UGT2B15 and UGT2B17 ) that are involved in the metabolism of adrenal steroids were upregulated in castration resistant prostate cancer (CRPC). In vitro, some DuCaP cells survived androgen depletion, and eventually gave rise to a culture adapted to these conditions. During and after this transition, most of the steroidogenic enzymes were upregulated. These cells also are enriched with stem/progenitor cell markers cytokeratin 5 (CK5) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, putative stem/progenitor cell markers CK5, c-Kit, nestin, CD44, c-met, ALDH1A1, α2-integrin, CD133, ABCG2, CXCR4 and POU5F1 were upregulated in clinical CRPC. The upregulation of steroidogenic enzymes and stem cell markers in recurrent tumors suggests that cancer initiating cells can expand by adaptation to their T/DHT deprived environment. Therapies targeting the metabolism of adrenal steroids by the tumor may prove effective in preventing tumor regrowth.
PMCID: PMC3146625  PMID: 21365123
15.  PCA3 and TMPRSS2-ERG: Promising Biomarkers in Prostate Cancer Diagnosis 
Cancers  2010;2(3):1432-1440.
The search for the biomarkers to precisely and non-invasively characterize the biology of prostate cancer (PCa) is the focus of many laboratories across the world. Although prostate-specific antigen (PSA) remains the standard diagnostic tool for PCa, its low specificity leads to unnecessary biopsies in a substantial number of patients. More importantly, with the current status of knowledge, it is very difficult to early identify individuals with a life-threatening disease who require an immediate treatment. The significant advances in genetics and biotechnology in recent years has led to the discovery of new molecular markers including PCA3 and the TMPRSS2:ERG genomic fusion. Both PCA3 and TMPRSS2:ERG, compared to PSA, show an increased specificity in PCa detection. However, the quest for a single PCa marker that can fully satisfy urologists and their patients is still ongoing. The aim of this review is to present the recent findings on PCA3 and TMPRSS2:ERG and to describe their clinical implications and performance.
PMCID: PMC3837315  PMID: 24281166
prostate cancer; diagnosis; molecular; marker; PCA3; TMPRSS2:ERG
16.  A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH 
BMC Genomics  2007;8:84.
Currently, two main technologies are used for screening of DNA copy number; the BAC (Bacterial Artificial Chromosome) and the recently developed oligonucleotide-based CGH (Chromosomal Comparative Genomic Hybridization) arrays which are capable of detecting small genomic regions with amplification or deletion. The correlation as well as the discriminative power of these platforms has never been compared statistically on a significant set of human patient samples.
In this paper, we present an exhaustive comparison between the two CGH platforms, undertaken at two independent sites using the same batch of DNA from 19 advanced prostate cancers. The comparison was performed directly on the raw data and a significant correlation was found between the two platforms. The correlation was greatly improved when the data were averaged over large chromosomic regions using a segmentation algorithm. In addition, this analysis has enabled the development of a statistical model to discriminate BAC outliers that might indicate microevents. These microevents were validated by the oligo platform results.
This article presents a genome-wide statistical validation of the oligo array platform on a large set of patient samples and demonstrates statistically its superiority over the BAC platform for the Identification of chromosomic events. Taking advantage of a large set of human samples treated by the two technologies, a statistical model has been developed to show that the BAC platform could also detect microevents.
PMCID: PMC1852311  PMID: 17394638
17.  Prevalence of von Hippel-Lindau gene mutations in sporadic renal cell carcinoma: results from the Netherlands cohort study 
BMC Cancer  2005;5:57.
Biallelic von Hippel-Lindau (VHL) gene defects, a rate-limiting event in the carcinogenesis, occur in approximately 75% of sporadic clear-cell Renal Cell Carcinoma (RCC). We studied the VHL mutation status in a large population-based case group.
Cases were identified within the Netherlands cohort study on diet and cancer, which includes 120,852 men and women. After 11.3 years of follow-up, 337 incident cases with histologically confirmed epithelial cancers were identified. DNA was isolated from paraffin material collected from 51 pathology laboratories and revised by one pathologist, leaving material from 235 cases. VHL mutational status was assessed by SSCP followed by direct sequencing, after testing SSCP as a screening tool in a subsample.
The number of mutations was significantly higher for clear-cell RCC compared to other histological types. We observed 131 mutations in 114 out of 187 patients (61%) with clear-cell RCC. The majority of mutations were truncating mutations (47%). The mean tumor size was 72.7 mm for mutated tumors compared to 65.3 mm for wildtype tumors (p = 0.06). No statistically significant differences were observed for nuclear grade, TNM distribution or stage. In other histological types, we observed 8 mutations in 7 out of 48 patients (15%), 1 mutation in 1 of 6 oncocytoma, 3 mutations in 2 of 7 chromophobe RCC, 2 mutations in 2 of 30 papillary RCC, no mutations in 1 collecting duct carcinoma and 2 mutations in 2 of 4 unclassified RCC.
VHL mutations were detected in 61% of sporadic clear-cell RCC. VHL mutated and wildtype clear-cell RCC did not differ with respect to most parameters.
PMCID: PMC1177929  PMID: 15932632

Results 1-17 (17)