PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
author:("Santos, lucio")
1.  Attenuation measurements show that the presence of a TachoSil surgical patch will not compromise target irradiation in intra-operative electron radiation therapy or high-dose-rate brachytherapy 
Background
Surgery of locally advanced and/or recurrent rectal cancer can be complemented with intra-operative electron radiation therapy (IOERT) to deliver a single dose of radiation directly to the unresectable margins, while sparing nearby sensitive organs/structures. Haemorrhages may occur and can affect the dose distribution, leading to an incorrect target irradiation. The TachoSil (TS) surgical patch, when activated, creates a fibrin clot at the surgical site to achieve haemostasis. The aim of this work was to determine the effect of TS on the dose distribution, and ascertain whether it could be used in combination with IOERT. This characterization was extended to include high dose rate (HDR) intraoperative brachytherapy, which is sometimes used at other institutions instead of IOERT.
Methods
CT images of the TS patch were acquired for initial characterization. Dosimetric measurements were performed in a water tank phantom, using a conventional LINAC with a hard-docking system of cylindrical applicators. Percentage Depth Dose (PDD) curves were obtained, and measurements made at the depth of dose maximum for the three clinically used electron energies (6, 9 and 12MeV), first without any attenuator and then with the activated patch of TS completely covering the tip of the IOERT applicator. For HDR brachytherapy, a measurement setup was improvised using a solid water phantom and a Farmer ionization chamber.
Results
Our measurements show that the attenuation of a TachoSil patch is negligible, both for high energy electron beams (6 to 12MeV), and for a HDR 192Ir brachytherapy source. Our results cannot be extrapolated to lower beam energies such as 50 kVp X-rays, which are sometimes used for breast IORT.
Conclusion
The TachoSil surgical patch can be used in IORT procedures using 6MeV electron energies or higher, or HDR 192Ir brachytherapy.
doi:10.1186/s13014-014-0316-1
PMCID: PMC4293105  PMID: 25572977
Intra-operative electron radiation therapy; TachoSil; Haemostatic patch; Rectal cancer
2.  Schistosome and liver fluke derived catechol-estrogens and helminth associated cancers 
Frontiers in Genetics  2014;5:444.
Infection with helminth parasites remains a persistent public health problem in developing countries. Three of these pathogens, the liver flukes Clonorchis sinensis, Opisthorchis viverrini and the blood fluke Schistosoma haematobium, are of particular concern due to their classification as Group 1 carcinogens: infection with these worms is carcinogenic. Using liquid chromatography-mass spectrometry (LC-MS/MS) approaches, we identified steroid hormone like (e.g., oxysterol-like, catechol estrogen quinone-like, etc.) metabolites and related DNA-adducts, apparently of parasite origin, in developmental stages including eggs of S. haematobium, in urine of people with urogenital schistosomiasis, and in the adult stage of O. viverrini. Since these kinds of sterol derivatives are metabolized to active quinones that can modify DNA, which in other contexts can lead to breast and other cancers, helminth parasite associated sterols might induce tumor-like phenotypes in the target cells susceptible to helminth parasite associated cancers, i.e., urothelial cells of the bladder in the case of urogenital schistosomiasis and the bile duct epithelia or cholangiocytes, in the case of O. viverrini and C. sinensis. Indeed we postulate that helminth induced cancers originate from parasite estrogen-host epithelial/urothelial cell chromosomal DNA adducts, and here we review recent findings that support this conjecture.
doi:10.3389/fgene.2014.00444
PMCID: PMC4274992  PMID: 25566326
urogenital schistosomiasis; opisthorchiasis; catechol-estrogens; oxysterols; DNA-adducts; neglected tropical disease-associated-cancer; squamous cell carcinoma of the bladder; cholangiocarcinoma
3.  P53 and Cancer-Associated Sialylated Glycans Are Surrogate Markers of Cancerization of the Bladder Associated with Schistosoma haematobium Infection 
Background
Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers.
Methodology/Principal Findings
Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%), cell-surface cancer-associated glycan sialyl-Tn (sTn) and sialyl-Lewisa/x (sLea/sLex), involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed in the healthy urothelium.
Conclusion/Significance
This preliminary study suggests that p53 and sialylated glycans are surrogate biomarkers of bladder cancerization associated with S. haematobium, highlighting a missing link between infection and cancer development. Eggs of S. haematobium express sLea and sLex antigens in mimicry of human leukocytes glycosylation, which may play a role in the colonization and disease dissemination. These observations may help the early identification of infected patients at a higher risk of developing bladder cancer and guide the future development of non-invasive diagnostic tests.
Author Summary
Epidemiological studies associate infection with S. haematobium, an endemic parasitic flatworm in Africa and the Middle East, with the development of bladder cancer. Nevertheless, little molecular evidence exists supporting this association. This work draws attention to the common molecular pathways underlying these two events, highlighting a potentially unreported link between infection and cancer development. It has been demonstrated that a panel of biomarkers commonly associated with aggressive forms of bladder cancer is also present in non-malignant tissues infected with the parasite. This may offer a means of early identification of people with this parasitic infection who are at risk of developing of bladder cancer, and may guide the establishment of non-invasive diagnostic tests. Furthermore, we observed that parasite eggs mimic the molecular nature of human cells, providing a possible mechanism of immune escape and persistent infection. Such knowledge is considered pivotal to develop novel therapeutic strategies.
doi:10.1371/journal.pntd.0003329
PMCID: PMC4263606  PMID: 25502795
4.  Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review 
Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatrography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease.
We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques.
doi:10.1016/j.metabol.2013.04.003
PMCID: PMC3755027  PMID: 23664145
Mass spectrometry; LC-MS; estradiol metabolites; cholesterol metabolites; cancer biomarkers
5.  Phospho-mTOR in non-tumour and tumour bladder urothelium: Pattern of expression and impact on urothelial bladder cancer patients 
Oncology Letters  2014;8(4):1447-1454.
Urothelial bladder carcinoma (UBC) is heterogeneous in its pathology and clinical behaviour. Evaluation of prognostic and predictive biomarkers is necessary, in order to produce personalised treatment options. The present study used immunohistochemistry to evaluate UBC sections containing tumour and non-tumour areas from 76 patients, for the detection of p-mTOR, CD31 and D2-40 (blood and lymphatic vessels identification, respectively). Of the non-tumour and tumour sections, 36 and 20% were scored positive for p-mTOR expression, respectively. Immunoexpression was observed in umbrella cells from non-tumour urothelium, in all cell layers from non-muscle-invasive (NMI) tumours (including expression in superficial cells), and in spots of cells from muscle-invasive (MI) tumours. Positive expression decreased from non-tumour to tumour urothelium, and from pT1/pTis to pT3/pT4 tumours; however, the few pT3/pT4 positive cases had worse survival rates, with 5-year disease-free survival being significantly lower. Angiogenesis occurrence was impaired in pT3/pT4 tumours that did not express p-mTOR. In conclusion, p-mTOR expression in non-tumour umbrella cells is likely a reflection of their metabolic plasticity, and extension to the inner layers of the urothelium in NMI tumours is consistent with an enhanced malignant potential. The expression in cell spots in a few MI tumours and absence of expression in the remaining tumours is intriguing and requires further research. Additional studies regarding the up- and downstream effectors of the mTOR pathway should be conducted.
doi:10.3892/ol.2014.2392
PMCID: PMC4156165  PMID: 25202348
p-mTOR; urothelial bladder cancer; pattern of expression; umbrella cells
6.  Urinary Estrogen Metabolites and Self-Reported Infertility in Women Infected with Schistosoma haematobium 
PLoS ONE  2014;9(5):e96774.
Background
Schistosomiasis is a neglected tropical disease, endemic in 76 countries, that afflicts more than 240 million people. The impact of schistosomiasis on infertility may be underestimated according to recent literature. Extracts of Schistosoma haematobium include estrogen-like metabolites termed catechol-estrogens that down regulate estrogen receptors alpha and beta in estrogen responsive cells. In addition, schistosome derived catechol-estrogens induce genotoxicity that result in estrogen-DNA adducts. These catechol estrogens and the catechol-estrogen-DNA adducts can be isolated from sera of people infected with S. haematobium. The aim of this study was to study infertility in females infected with S. haematobium and its association with the presence of schistosome-derived catechol-estrogens.
Methodology/Principal Findings
A cross-sectional study was undertaken of female residents of a region in Bengo province, Angola, endemic for schistosomiasis haematobia. Ninety-three women and girls, aged from two (parents interviewed) to 94 years were interviewed on present and previous urinary, urogenital and gynecological symptoms and complaints. Urine was collected from the participants for egg-based parasitological assessment of schistosome infection, and for liquid chromatography diode array detection electron spray ionization mass spectrometry (LC/UV-DAD/ESI-MSn) to investigate estrogen metabolites in the urine. Novel estrogen-like metabolites, potentially of schistosome origin, were detected in the urine of participants who were positive for eggs of S. haematobium, but not detected in urines negative for S. haematobium eggs. The catechol-estrogens/ DNA adducts were significantly associated with schistosomiasis (OR 3.35; 95% CI 2.32–4.84; P≤0.001). In addition, presence of these metabolites was positively associated with infertility (OR 4.33; 95% CI 1.13–16.70; P≤0.05).
Conclusions/Significance
Estrogen metabolites occur widely in diverse metabolic pathways. In view of the statistically significant association between catechol-estrogens/ DNA adducts and self-reported infertility, we propose that an estrogen-DNA adduct mediated pathway in S. haematobium-induced ovarian hormonal deregulation could be involved. In addition, the catechol-estrogens/ DNA adducts described here represent potential biomarkers for schistosomiasis haematobia.
doi:10.1371/journal.pone.0096774
PMCID: PMC4029575  PMID: 24848950
7.  Synergistic Effect between Cisplatin and Sunitinib Malate on Human Urinary Bladder-Cancer Cell Lines 
BioMed Research International  2013;2013:791406.
The aim of this paper is to analyse sunitinib malate in vitro ability to enhance cisplatin cytotoxicity in T24, 5637, and HT1376 human urinary bladder-cancer cell lines. Cells were treated with cisplatin (3, 6, 13, and 18 μM) and sunitinib malate (1, 2, 4, 6, and 20 μM), either in isolation or combined, over the course of 72 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, acridine orange, and monodansylcadaverine staining and flow cytometry were performed. The combination index (CI) was calculated based on the Chou and Talalay method. In isolation, cisplatin and sunitinib malate statistically (P < 0.05) decrease cell viability in all cell lines in a dose-dependent manner, with the presence of autophagic vacuoles. A cell cycle arrest in early S-phase and in G0/G1-phase was also found after exposure to cisplatin and sunitinib malate, in isolation, respectively. Treatment of urinary bladder-cancer cells with a combination of cisplatin and sunitinib malate showed a synergistic effect (CI < 1). Autophagy and apoptosis studies showed a greater incidence when the combined treatment was put into use. This hints at the possibility of a new combined therapeutic approach. If confirmed in vivo, this conjugation may provide a means of new perspectives in muscle-invasive urinary bladder cancer treatment.
doi:10.1155/2013/791406
PMCID: PMC3863483  PMID: 24369536
8.  Personalizing therapies for gastric cancer: Molecular mechanisms and novel targeted therapies 
Globally, gastric cancer is the 4th most frequently diagnosed cancer and the 2nd leading cause of death from cancer, with an estimated 990000 new cases and 738000 deaths registered in 2008. In the advanced setting, standard chemotherapies protocols acquired an important role since last decades in prolong survival. Moreover, recent advances in molecular therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER2) therapies. Trastuzumab, an anti-HER2 monoclonal antibody, was the first target drug in the metastatic setting that showed benefit in overall survival when in association with platinum-5-fluorouracil based chemotherapy. Further, HER2 overexpression analysis acquired a main role in predict response for trastuzumab in this field. Thus, we conducted a review that will discuss the main points concerning trastuzumab and HER2 in gastric cancer, providing a comprehensive overview of molecular mechanisms and novel trials involved.
doi:10.3748/wjg.v19.i38.6383
PMCID: PMC3801309  PMID: 24151357
Gastric cancer; Human epidermal growth factor receptor 2; Biomarkers; Target therapies; Trastuzumab; Lapatinib; Pertuzumab; Trastuzumab-DM1; Afatinib
9.  High resolution melting analysis of KRAS, BRAF and PIK3CA in KRAS exon 2 wild-type metastatic colorectal cancer 
BMC Cancer  2013;13:169.
Background
KRAS is an EGFR effector in the RAS/RAF/ERK cascade that is mutated in about 40% of metastatic colorectal cancer (mCRC). Activating mutations in codons 12 and 13 of the KRAS gene are the only established negative predictors of response to anti-EGFR therapy and patients whose tumors harbor such mutations are not candidates for therapy. However, 40 to 60% of wild-type cases do not respond to anti-EGFR therapy, suggesting the involvement of other genes that act downstream of EGFR in the RAS-RAF-MAPK and PI3K-AKT pathways or activating KRAS mutations at other locations of the gene.
Methods
DNA was obtained from a consecutive series of 201 mCRC cases (FFPE tissue), wild-type for KRAS exon 2 (codons 12 and 13). Mutational analysis of KRAS (exons 3 and 4), BRAF (exons 11 and 15), and PIK3CA (exons 9 and 20) was performed by high resolution melting (HRM) and positive cases were then sequenced.
Results
One mutation was present in 23.4% (47/201) of the cases and 3.0% additional cases (6/201) had two concomitant mutations. A total of 53 cases showed 59 mutations, with the following distribution: 44.1% (26/59) in KRAS (13 in exon 3 and 13 in exon 4), 18.6% (11/59) in BRAF (two in exon 11 and nine in exon 15) and 37.3% (22/59) in PIK3CA (16 in exon 9 and six in exon 20). In total, 26.4% (53/201) of the cases had at least one mutation and the remaining 73.6% (148/201) were wild-type for all regions studied. Five of the mutations we report, four in KRAS and one in BRAF, have not previously been described in CRC. BRAF and PIK3CA mutations were more frequent in the colon than in the sigmoid or rectum: 20.8% vs. 1.6% vs. 0.0% (P=0.000) for BRAF and 23.4% vs. 12.1% vs. 5.4% (P=0.011) for PIK3CA mutations.
Conclusions
About one fourth of mCRC cases wild-type for KRAS codons 12 and 13 present other mutations either in KRAS, BRAF, or PIK3CA, many of which may explain the lack of response to anti-EGFR therapy observed in a significant proportion of these patients.
doi:10.1186/1471-2407-13-169
PMCID: PMC3623853  PMID: 23548132
10.  Predictive Biomarkers of Bacillus Calmette-Guérin Immunotherapy Response in Bladder Cancer: Where Are We Now? 
Advances in Urology  2012;2012:232609.
The most effective therapeutic option for managing nonmuscle invasive bladder cancer (NMIBC), over the last 30 years, consists of intravesical instillations with the attenuated strain Bacillus Calmette-Guérin (the BCG vaccine). This has been performed as an adjuvant therapeutic to transurethral resection of bladder tumour (TURBT) and mostly directed towards patients with high-grade tumours, T1 tumours, and in situ carcinomas. However, from 20% to 40% of the patients do not respond and frequently present tumour progression. Since BCG effectiveness is unpredictable, it is important to find consistent biomarkers that can aid either in the prediction of the outcome and/or side effects development. Accordingly, we conducted a systematic critical review to identify the most preeminent predictive molecular markers associated with BCG response. To the best of our knowledge, this is the first review exclusively focusing on predictive biomarkers for BCG treatment outcome. Using a specific query, 1324 abstracts were gathered, then inclusion/exclusion criteria were applied, and finally 87 manuscripts were included. Several molecules, including CD68 and genetic polymorphisms, have been identified as promising surrogate biomarkers. Combinatory analysis of the candidate predictive markers is a crucial step to create a predictive profile of treatment response.
doi:10.1155/2012/232609
PMCID: PMC3420223  PMID: 22919375
11.  Colorectal carcinomas with microsatellite instability display a different pattern of target gene mutations according to large bowel site of origin 
BMC Cancer  2010;10:587.
Background
Only a few studies have addressed the molecular pathways specifically involved in carcinogenesis of the distal colon and rectum. We aimed to identify potential differences among genetic alterations in distal colon and rectal carcinomas as compared to cancers arising elsewhere in the large bowel.
Methods
Constitutional and tumor DNA from a test series of 37 patients with rectal and 25 patients with sigmoid carcinomas, previously analyzed for microsatellite instability (MSI), was studied for BAX, IGF2R, TGFBR2, MSH3, and MSH6 microsatellite sequence alterations, BRAF and KRAS mutations, and MLH1 promoter methylation. The findings were then compared with those of an independent validation series consisting of 36 MSI-H carcinomas with origin from each of the large bowel regions. Immunohistochemical and germline mutation analyses of the mismatch repair system were performed when appropriate.
Results
In the test series, IGFR2 and BAX mutations were present in one and two out of the six distal MSI-H carcinomas, respectively, and no mutations were detected in TGFBR2, MSH3, and MSH6. We confirmed these findings in the validation series, with TGFBR2 and MSH3 microsatellite mutations occurring less frequently in MSI-H rectal and sigmoid carcinomas than in MSI-H colon carcinomas elsewhere (P = 0.00005 and P = 0.0000005, respectively, when considering all MSI-carcinomas of both series). No MLH1 promoter methylation was observed in the MSI-H rectal and sigmoid carcinomas of both series, as compared to 53% found in MSI-H carcinomas from other locations (P = 0.004). KRAS and BRAF mutational frequencies were 19% and 43% in proximal carcinomas and 25% and 17% in rectal/sigmoid carcinomas, respectively.
Conclusion
The mechanism and the pattern of genetic changes driving MSI-H carcinogenesis in distal colon and rectum appears to differ from that occurring elsewhere in the colon and further investigation is warranted both in patients with sporadic or hereditary disease.
doi:10.1186/1471-2407-10-587
PMCID: PMC2984429  PMID: 20979647
13.  Chromosome copy number changes carry prognostic information independent of KIT/PDGFRA point mutations in gastrointestinal stromal tumors 
BMC Medicine  2010;8:26.
Background
Oncogenic point mutations in KIT or PDGFRA are recognized as the primary events responsible for the pathogenesis of most gastrointestinal stromal tumors (GIST), but additional genomic alterations are frequent and presumably required for tumor progression. The relative contribution of such alterations for the biology and clinical behavior of GIST, however, remains elusive.
Methods
In the present study, somatic mutations in KIT and PDGFRA were evaluated by direct sequencing analysis in a consecutive series of 80 GIST patients. For a subset of 29 tumors, comparative genomic hybridization was additionally used to screen for chromosome copy number aberrations. Genotype and genomic findings were cross-tabulated and compared with available clinical and follow-up data.
Results
We report an overall mutation frequency of 87.5%, with 76.25% of the tumors showing alterations in KIT and 11.25% in PDGFRA. Secondary KIT mutations were additionally found in two of four samples obtained after imatinib treatment. Chromosomal imbalances were detected in 25 out of 29 tumors (86%), namely losses at 14q (88% of abnormal cases), 22q (44%), 1p (44%), and 15q (36%), and gains at 1q (16%) and 12q (20%). In addition to clinico-pathological high-risk groups, patients with KIT mutations, genomic complexity, genomic gains and deletions at either 1p or 22q showed a significantly shorter disease-free survival. Furthermore, genomic complexity was the best predictor of disease progression in multivariate analysis.
Conclusions
In addition to KIT/PDGFRA mutational status, our findings indicate that secondary chromosomal changes contribute significantly to tumor development and progression of GIST and that genomic complexity carries independent prognostic value that complements clinico-pathological and genotype information.
doi:10.1186/1741-7015-8-26
PMCID: PMC2876987  PMID: 20470368
14.  Biological similarities between murine chemical-induced and natural human bladder carcinogenesis 
Oncology Letters  2010;1(2):373-377.
The present study investigated the similarities between rodent and human urothelial carcinogenesis models using DNA content, p53 and Ki-67 immunoexpression as surrogate markers of bladder carcinogenesis. Following N-butyl-N-(4-hydroxybutyl)-nitrosamine exposure, 49 human cystectomy specimens of bladder cancer and 53 rat bladder specimens were studied. All of the tumours and adjacent mucosa present in each specimen were evaluated. High similarities were observed between the rodent urothelium carcinogenesis process and the corresponding process in humans, in regards to the histopathological features and biological alteration profile: DNA aneuploidy, p53 overexpression and high proliferative index measured by Ki-67 immunoexpression. Despite these similarities, a higher frequency of alterations was observed in earlier stages in the rat chemical-induced carcinogenesis, namely in 5c aneuploid cells, p53 overexpression and higher Ki-67 labelling index. These results confirm that this experimental animal model is a suitable and reproducible model of bladder carcinogenesis, particularly in regards to high-risk non-invasive and invasive urothelial carcinomas. These features mandate its use in the identification of new molecular targets and evaluation of tumour response to new cytotoxic drugs or drug combinations in bladder cancer therapeutic intervention.
doi:10.3892/ol_00000066
PMCID: PMC3436375  PMID: 22966311
human; rat; bladder carcinogenesis model; DNA content; p53; Ki-67

Results 1-14 (14)