PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (65)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? 
Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.
doi:10.1098/rspb.2012.2753
PMCID: PMC3574368  PMID: 23378666
trait-based approaches; zoonoses; viral richness; reservoir host; spillover; Chiroptera
2.  Diversity and Epidemiology of Mokola Virus 
Mokola virus (MOKV) appears to be exclusive to Africa. Although the first isolates were from Nigeria and other Congo basin countries, all reports over the past 20 years have been from southern Africa. Previous phylogenetic studies analyzed few isolates or used partial gene sequence for analysis since limited sequence information is available for MOKV and the isolates were distributed among various laboratories. The complete nucleoprotein, phosphoprotein, matrix and glycoprotein genes of 18 MOKV isolates in various laboratories were sequenced either using partial or full genome sequencing using pyrosequencing and a phylogenetic analysis was undertaken. The results indicated that MOKV isolates from the Republic of South Africa, Zimbabwe, Central African Republic and Nigeria clustered according to geographic origin irrespective of the genes used for phylogenetic analysis, similar to that observed with Lagos bat virus. A Bayesian Markov-Chain-Monte-Carlo- (MCMC) analysis revealed the age of the most recent common ancestor (MRCA) of MOKV to be between 279 and 2034 years depending on the genes used. Generally, all MOKV isolates showed a similar pattern at the amino acid sites considered influential for viral properties.
Author Summary
According to the World Health Organization, rabies is considered both a neglected zoonotic and tropical disease. Among all the lyssavirus species known to exist today, Mokola virus is unique and appears to be exclusive to Africa. In contrast to all other known virus species in the genus Lyssavirus of the family Rhabdoviridae, its reservoir host has not been identified yet. As only limited sequence information is available, this study significantly contributes to the understanding of the genetic diversity and relatedness of Mokola viruses. In a collective approach, the complete nucleoprotein, phosphoprotein, matrix, and glycoprotein genes of all Mokola viruses isolated to date were sequenced in various rabies laboratories across the world. A phylogenetic analysis was undertaken and the most recent common ancestor was determined. Subsequently, results were linked to epidemiological background data. We also conducted a comparative study of distinct antigenic sites considered influential for viral properties within those genes.
doi:10.1371/journal.pntd.0002511
PMCID: PMC3812115  PMID: 24205423
3.  Louping Ill Virus Genome Sequence Derived from the Spinal Cord of an Infected Lamb 
Genome Announcements  2013;1(4):e00454-13.
Louping ill virus (LIV) is a zoonotic virus causing fatal encephalitis in young sheep and grouse. We have recovered the complete genome sequence from a spinal cord sample prepared from a lamb that was naturally infected with LIV. This is only the second LIV genome sequence reported and the first prepared from a clinical sample.
doi:10.1128/genomeA.00454-13
PMCID: PMC3715664  PMID: 23868122
4.  Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization 
Nucleic Acids Research  2013;41(11):5912-5926.
All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N–RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses.
doi:10.1093/nar/gkt268
PMCID: PMC3675483  PMID: 23595147
5.  Assessing the Risks of West Nile Virus–Infected Mosquitoes from Transatlantic Aircraft: Implications for Disease Emergence in the United Kingdom 
Abstract
The number of West Nile virus (WNV)–infected mosquitoes aboard aircraft from the United States that arrive in the United Kingdom each summer was determined using a quantitative risk assessment. In the worst-case scenario, when WNV levels in mosquitoes are high (at epidemic levels) the probability of at least one WNV-infected mosquito being introduced into the United Kingdom was predicted to be 0.99. During these periods, a mean of 5.2 infected mosquitoes were estimated to be aboard flights from the United States to the United Kingdom during May to October, with 90% certainty that the exact value lies between one and ten mosquitoes. Heathrow airport was predicted to receive the majority of the infected mosquitoes (72.1%). Spatial analysis revealed the region surrounding Heathrow satisfies the criteria for potential WNV exposure as both WNV-competent mosquitoes and susceptible wild bird species are present. This region is, therefore, recommended for targeted, risk-based surveillance of WNV-infected mosquitoes in addition to an increased awareness of the risks to horses, birds and humans.
doi:10.1089/vbz.2010.0176
PMCID: PMC3319934  PMID: 22217181
Arbovirus(es); GIS; Mosquito(es); Risk analysis; West Nile virus
6.  Novel Hantavirus in Wildlife, United Kingdom 
Emerging Infectious Diseases  2013;19(4):673-675.
doi:10.3201/eid1904.121057
PMCID: PMC3647411  PMID: 23750506
hantavirus; Tatenale; field vole; United Kingdom; viruses; wildlife
7.  Demography of straw-colored fruit bats in Ghana 
Journal of mammalogy  2012;93(5):1393-1404.
Eidolon helvum is widely distributed across sub-Saharan Africa where it forms large, dense colonies. The species is migratory and satellite telemetry studies have demonstrated that individuals can migrate over 2,500 km. It is a common source of bush meat in West Africa and evidence of infection with potentially zoonotic viruses has been found in West African colonies. The species, therefore, is of interest to both ecologists and those interested in public health. Despite this, demographic parameters of the species are unknown. We focused our study primarily on a colony of up to 1,000,000 bats that roost in trees in Accra, Ghana to obtain estimates of birth rate and survival probability. Aging of bats by examination of tooth cementum annuli allowed use of life tables to indicate an annual survival probability for juveniles of 0.43 (95% confidence interval [CI] 0.16–0.77) and for adults of 0.83 (95% CI 0.73–0.93). Additionally, an annual adult survival probability of 0.63 (95% CI 0.27–0.88) was estimated by following 98 radiocollared bats over a year; capture–recapture data were analyzed using multistate models to address the confounding factor of emigration. True survival probabilities may be in between the 2 estimates, because permanent emigration may lead to underestimation in the capture–recapture study, and population decline may lead to overestimation in the life table analysis. Birth rates (0.96 young per female per year, 95% CI 0.92–0.98) and colony size changes were also estimated. Estimation of these key parameters will allow future analyses of both infection dynamics within, and harvest sustainability of, E. helvum populations.
doi:10.1644/11-MAMM-A-270.1
PMCID: PMC3605799  PMID: 23525358
capture–recapture; Eidolon helvum; multistate model; population dynamics; survival; tooth cementum
8.  Complete Genome Sequence of Ikoma Lyssavirus 
Journal of Virology  2012;86(18):10242-10243.
Lyssaviruses (family Rhabdoviridae) constitute one of the most important groups of viral zoonoses globally. All lyssaviruses cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Currently available vaccines are highly protective against the predominantly circulating lyssavirus species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence for a novel lyssavirus, Ikoma lyssavirus (IKOV), isolated from an African civet in Tanzania displaying clinical signs of rabies. Genetically, this virus is the most divergent within the genus Lyssavirus. Characterization of the genome will help to improve our understanding of lyssavirus diversity and enable investigation into vaccine-induced immunity and protection.
doi:10.1128/JVI.01628-12
PMCID: PMC3446578  PMID: 22923801
9.  Interspecies protein substitution to investigate the role of the lyssavirus glycoprotein 
The Journal of General Virology  2013;94(Pt 2):284-292.
European bat lyssaviruses type 1 (EBLV-1) and type 2 (EBLV-2) circulate within bat populations throughout Europe and are capable of causing disease indistinguishable from that caused by classical rabies virus (RABV). However, the determinants of viral fitness and pathogenicity are poorly understood. Full-length genome clones based on the highly attenuated, non-neuroinvasive, RABV vaccine strain (SAD-B19) were constructed with the glycoprotein (G) of either SAD-B19 (SN), of EBLV-1 (SN-1) or EBLV-2 (SN-2). In vitro characterization of SN-1 and SN-2 in comparison to wild-type EBLVs demonstrated that the substitution of G affected the final virus titre and antigenicity. In vivo, following peripheral infection with a high viral dose (104 f.f.u.), animals infected with SN-1 had reduced survivorship relative to infection with SN, resulting in survivorship similar to animals infected with EBLV-1. The histopathological changes and antigen distribution observed for SN-1 were more representative of those observed with SN than with EBLV-1. EBLV-2 was unable to achieve a titre equivalent to that of the other viruses. Therefore, a reduced-dose experiment (103 f.f.u.) was undertaken in vivo to compare EBLV-2 and SN-2, which resulted in 100 % survivorship for all recombinant viruses (SN, SN-1 and SN-2) while clinical disease developed in mice infected with the EBLVs. These data indicate that interspecies replacement of G has an effect on virus titre in vitro, probably as a result of suboptimal G–matrix protein interactions, and influences the survival outcome following a peripheral challenge with a high virus titre in mice.
doi:10.1099/vir.0.048827-0
PMCID: PMC3709617  PMID: 23100360
10.  A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study 
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation.
doi:10.1098/rstb.2012.0228
PMCID: PMC3427567  PMID: 22966143
bat; zoonosis; emergence; collaborative framework
11.  Ikoma Lyssavirus, Highly Divergent Novel Lyssavirus in an African Civet1 
Emerging Infectious Diseases  2012;18(4):664-667.
Evidence in support of a novel lyssavirus was obtained from brain samples of an African civet in Tanzania. Results of phylogenetic analysis of nucleoprotein gene sequences from representative Lyssavirus species and this novel lyssavirus provided strong empirical evidence that this is a new lyssavirus species, designated Ikoma lyssavirus.
doi:10.3201/eid1804.111553
PMCID: PMC3309678  PMID: 22469151
Tanzania; African civet; rabies virus; West Caucasian bat virus; rabies virus; viruses; Lyssavirus; lyssaviruses; Ikoma lyssavirus; novel rabies virus; novel lyssavirus
12.  Qualitative Release Assessment to Estimate the Likelihood of Henipavirus Entering the United Kingdom 
PLoS ONE  2012;7(2):e27918.
The genus Henipavirus includes Hendra virus (HeV) and Nipah virus (NiV), for which fruit bats (particularly those of the genus Pteropus) are considered to be the wildlife reservoir. The recognition of henipaviruses occurring across a wider geographic and host range suggests the possibility of the virus entering the United Kingdom (UK). To estimate the likelihood of henipaviruses entering the UK, a qualitative release assessment was undertaken. To facilitate the release assessment, the world was divided into four zones according to location of outbreaks of henipaviruses, isolation of henipaviruses, proximity to other countries where incidents of henipaviruses have occurred and the distribution of Pteropus spp. fruit bats. From this release assessment, the key findings are that the importation of fruit from Zone 1 and 2 and bat bushmeat from Zone 1 each have a Low annual probability of release of henipaviruses into the UK. Similarly, the importation of bat meat from Zone 2, horses and companion animals from Zone 1 and people travelling from Zone 1 and entering the UK was estimated to pose a Very Low probability of release. The annual probability of release for all other release routes was assessed to be Negligible. It is recommended that the release assessment be periodically re-assessed to reflect changes in knowledge and circumstances over time.
doi:10.1371/journal.pone.0027918
PMCID: PMC3273481  PMID: 22328916
13.  Rapid Molecular Detection Methods for Arboviruses of Livestock of Importance to Northern Europe 
Arthropod-borne viruses (arboviruses) have been responsible for some of the most explosive epidemics of emerging infectious diseases over the past decade. Their impact on both human and livestock populations has been dramatic. The early detection either through surveillance or diagnosis of virus will be a critical feature in responding and resolving the emergence of such epidemics in the future. Although some of the most important emerging arboviruses are human pathogens, this paper aims to highlight those diseases that primarily affect livestock, although many are zoonotic and some occasionally cause human mortality. This paper also highlights the molecular detection methods specific to each virus and identifies those emerging diseases for which a rapid detection methods are not yet developed.
doi:10.1155/2012/719402
PMCID: PMC3246798  PMID: 22219660
14.  Flavivirus-induced antibody cross-reactivity 
The Journal of General Virology  2011;92(Pt 12):2821-2829.
Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.
doi:10.1099/vir.0.031641-0
PMCID: PMC3352572  PMID: 21900425
15.  A universal real-time assay for the detection of Lyssaviruses 
Journal of Virological Methods  2011;177(1-24):87-93.
Highlights
► Universal real-time PCR primer pair demonstrated to hybridize to and detect each of the known Lyssaviruses (including Rabies virus) with greater sensitivity than a standard pan-Lyssavirus hemi-nested RT-PCR typically used. ► Target sequences of bat derived virus species unavailable for analysis (Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus) were synthesized to produce oligonucleotides and the synthetic DNA was used as a target for primer hybridization.
Rabies virus (RABV) is enzootic throughout most of the world. It is now widely accepted that RABV had its origins in bats. Ten of the 11 Lyssavirus species recognised, including RABV, have been isolated from bats. There is, however, a lack of understanding regarding both the ecology and host reservoirs of Lyssaviruses. A real-time PCR assay for the detection of all Lyssaviruses using universal primers would be beneficial for Lyssavirus surveillance. It was shown that using SYBR® Green, a universal real-time PCR primer pair previously demonstrated to detect European bat Lyssaviruses 1 and 2, and RABV, was able to detect reverse transcribed RNA for each of the seven virus species available to us. Target sequences of bat derived virus species unavailable for analysis were synthesized to produce oligonucleotides. Lagos Bat-, Duvenhage- and Mokola virus full nucleoprotein gene clones enabled a limit of 5–50 plasmid copies to be detected. Five copies of each of the synthetic DNA oligonucleotides of Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus were detected. The single universal primer pair was therefore able to detect each of the most divergent known Lyssaviruses with great sensitivity.
doi:10.1016/j.jviromet.2011.07.002
PMCID: PMC3191275  PMID: 21777619
Lyssavirus; Rabies; Bat; SYBR Green; Real-time PCR; Synthetic DNA
16.  Immunogenicity Studies in Carnivores Using a Rabies Virus Construct with a Site-Directed Deletion in the Phosphoprotein 
Different approaches have been applied to develop highly attenuated rabies virus vaccines for oral vaccination of mesocarnivores. One prototype vaccine construct is SAD dIND1, which contains a deletion in the P-gene severely limiting the inhibition of type-1 interferon induction. Immunogenicity studies in foxes and skunks were undertaken to investigate whether this highly attenuated vaccine would be more immunogenic than the parental SAD B19 vaccine strain. In foxes, it was demonstrated that SAD dIND1 protected the animals against a rabies infection after a single oral dose, although virus neutralizing antibody titres were lower than in foxes orally vaccinated with the SAD B19 virus as observed in previous experiments. In contrast, skunks receiving 107.5 FFU SAD dIND1 did not develop virus neutralizing antibodies and were not protected against a subsequent rabies infection.
doi:10.4061/2011/898171
PMCID: PMC3177460  PMID: 21991446
17.  Renewed Global Partnerships and Redesigned Roadmaps for Rabies Prevention and Control 
Canine rabies, responsible for most human rabies deaths, is a serious global public health concern. This zoonosis is entirely preventable, but by focusing solely upon rabies prevention in humans, this “incurable wound” persists at high costs. Although preventing human deaths through canine rabies elimination is feasible, dog rabies control is often neglected, because dogs are not considered typical economic commodities by the animal health sector. Here, we demonstrate that the responsibility of managing rabies falls upon multiple sectors, that a truly integrated approach is the key to rabies elimination, and that considerable progress has been made to this effect. Achievements include the construction of global rabies networks and organizational partnerships; development of road maps, operational toolkits, and a blueprint for rabies prevention and control; and opportunities for scaling up and replication of successful programs. Progress must continue towards overcoming the remaining challenges preventing the ultimate goal of rabies elimination.
doi:10.4061/2011/923149
PMCID: PMC3135331  PMID: 21776359
18.  Using Intradermal Rabies Vaccine to Boost Immunity in People with Low Rabies Antibody Levels 
Intradermal rabies vaccine is recommended by the World Health Organisation, but not all countries, including England, follow this recommendation. A group of 12 adults in England previously given pre-exposure intradermal rabies vaccine were considered to be non-immune to rabies because their rabies antibody titres were known to be less than 0.5 IU/mL. A cohort study examined the immunizing effect of increasing the participants' cumulative dose of intradermal rabies to 2.0 IU. All patients subsequently demonstrated rabies antibody levels >0.5 IU·mL supporting evidence of adequate sero-conversion. No adverse effects of intradermal rabies vaccine boosting were noted. Within the limits of a small study the findings support the hypothesis that adequate levels of rabies antibody can be achieved by a schedule of intradermal injections delivered on at least three occasions with a cumulative rabies vaccine dose of 2.0 IU.
doi:10.4061/2011/601789
PMCID: PMC3170739  PMID: 21991440
19.  Imported Rabies, European Union and Switzerland, 2001–2010 
Emerging Infectious Diseases  2011;17(4):751-753.
doi:10.3201/eid1704.101154
PMCID: PMC3377407
Viruses; rabies; zoonoses; European Union; Switzerland; letter
20.  Diagnosis, management and post-mortem findings of a human case of rabies imported into the United Kingdom from India: a case report 
Virology Journal  2014;11:63.
Background
Human rabies infection continues to be a significant public health burden globally, and is occasionally imported to high income settings where the Milwaukee Protocol for intensive care management has recently been employed, with limited success in improving survival. Access to molecular diagnostics, pre- and post-mortem, and documentation of pathophysiological responses while using the Milwaukee protocol, can add useful insights for the future of rabies management.
Case presentation
A 58-year-old British Asian woman was referred to a regional general hospital in the UK with hydrophobia, anxiety and confusion nine weeks after receiving a dog bite in North West India. Nuchal skin biopsy, saliva, and a skin biopsy from the site of the dog bite wound, taken on the day of admission, all demonstrated the presence of rabies virus RNA. Within 48 hours sequence analysis of viral RNA confirmed the diagnosis and demonstrated that the virus was a strain closely related to canine rabies viruses circulating in South Asia. Her condition deteriorated rapidly with increased agitation and autonomic dysfunction. She was heavily sedated and intubated on the day after admission, treated according to a modified Milwaukee protocol, and remained stable until she developed heart block and profound acidosis and died on the eighth day. Analysis of autopsy samples showed a complete absence of rabies neutralizing antibody in cerebrospinal fluid and serum, and corresponding high levels of virus antigen and nucleic acid in brain and cerebrospinal fluid. Quantitative PCR showed virus was also distributed widely in peripheral tissues despite mild or undetectable histopathological changes. Vagus nerve branches in the heart showed neuritis, a probable Negri body but no demonstrable rabies antigen.
Conclusion
Rapid molecular diagnosis and strain typing is helpful in the management of human rabies infection. Post-mortem findings such as vagal neuritis highlight clinically important effects on the cardiovascular system which are typical for the clinical course of rabies in humans. Management guided by the Milwaukee protocol is feasible within well-resourced intensive care units, but its role in improving outcome for canine-derived rabies remains theoretical.
doi:10.1186/1743-422X-11-63
PMCID: PMC3977668
Rabies; Milwaukee protocol; Diagnosis
21.  Suboptimal Porcine Endogenous Retrovirus Infection in Non-Human Primate Cells: Implication for Preclinical Xenotransplantation 
PLoS ONE  2010;5(10):e13203.
Background
Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells.
Principal Findings
Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.
Conclusions
Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies.
doi:10.1371/journal.pone.0013203
PMCID: PMC2950858  PMID: 20949092
22.  Shedding Light on Avian Influenza H4N6 Infection in Mallards: Modes of Transmission and Implications for Surveillance 
PLoS ONE  2010;5(9):e12851.
Background
Wild mallards (Anas platyrhychos) are considered one of the primary reservoir species for avian influenza viruses (AIV). Because AIV circulating in wild birds pose an indirect threat to agriculture and human health, understanding the ecology of AIV and developing risk assessments and surveillance systems for prevention of disease is critical.
Methodology/Principal Findings
In this study, mallards were experimentally infected with an H4N6 subtype of AIV by oral inoculation or contact with an H4N6 contaminated water source. Cloacal swabs, oropharyngeal swabs, fecal samples, and water samples were collected daily and tested by real-time RT-PCR (RRT-PCR) for estimation of viral shedding. Fecal samples had significantly higher virus concentrations than oropharyngeal or cloacal swabs and 6 month old ducks shed significantly more viral RNA than 3 month old ducks regardless of sample type. Use of a water source contaminated by AIV infected mallards, was sufficient to transmit virus to naïve mallards, which shed AIV at higher or similar levels as orally-inoculated ducks.
Conclusions
Bodies of water could serve as a transmission pathway for AIV in waterfowl. For AIV surveillance purposes, water samples and fecal samples appear to be excellent alternatives or additions to cloacal and oropharyngeal swabbing. Furthermore, duck age (even within hatch-year birds) may be important when interpreting viral shedding results from experimental infections or surveillance. Differential shedding among hatch-year mallards could affect prevalence estimates, modeling of AIV spread, and subsequent risk assessments.
doi:10.1371/journal.pone.0012851
PMCID: PMC2942899  PMID: 20877466
23.  Long-Term Survival of an Urban Fruit Bat Seropositive for Ebola and Lagos Bat Viruses 
PLoS ONE  2010;5(8):e11978.
Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur.
doi:10.1371/journal.pone.0011978
PMCID: PMC2915915  PMID: 20694141
24.  Public Health Threat of New, Reemerging, and Neglected Zoonoses in the Industrialized World 
Improving our capacity to respond to these pathogens is essential.
Microbiologic infections acquired from animals, known as zoonoses, pose a risk to public health. An estimated 60% of emerging human pathogens are zoonotic. Of these pathogens, >71% have wildlife origins. These pathogens can switch hosts by acquiring new genetic combinations that have altered pathogenic potential or by changes in behavior or socioeconomic, environmental, or ecologic characteristics of the hosts. We discuss causal factors that influence the dynamics associated with emergence or reemergence of zoonoses, particularly in the industrialized world, and highlight selected examples to provide a comprehensive view of their range and diversity.
doi:10.3201/eid1601.081467
PMCID: PMC2874344  PMID: 20031035
Zoonoses; bacteria; viruses; parasites; infectious diseases; arthropod-borne disease; new zoonoses; emerging diseases; reemerging infections; synopsis
25.  A robust lentiviral pseudotype neutralisation assay for in-field serosurveillance of rabies and lyssaviruses in Africa 
Vaccine  2009;27(51):7178-7186.
The inflexibility of existing serological techniques for detection of rabies in surveillance constrains the benefit to be gained from many current control strategies. We analysed 304 serum samples from Tanzanian dogs for the detection of rabies antibodies in a pseudotype assay using lentiviral vectors bearing the CVS-11 envelope glycoprotein. Compared with the widely used gold standard fluorescent antibody virus neutralisation assay, a specificity of 100% and sensitivity of 94.4% with a strong correlation of antibody titres (r = 0.915) were observed with the pseudotype assay. To increase the assay's surveillance specificity in Africa we incorporated the envelope glycoprotein of local viruses, Lagos bat virus, Duvenhage virus or Mokola virus and also cloned the lacZ gene to provide a reporter element. Neutralisation assays using pseudotypes bearing these glycoproteins reveal that they provide a greater sensitivity compared to similar live virus assays and will therefore allow a more accurate determination of the distribution of these highly pathogenic infections and the threat they pose to human health. Importantly, the CVS-11 pseudotypes were highly stable during freeze–thaw cycles and storage at room temperature. These results suggest the proposed pseudotype assay is a suitable option for undertaking lyssavirus serosurveillance in areas most affected by these infections.
doi:10.1016/j.vaccine.2009.09.024
PMCID: PMC2789314  PMID: 19925950
Rabies virus; Lyssavirus; Africa; Pseudotype

Results 1-25 (65)