Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Plausibility of HIV-1 Infection of Oral Mucosal Epithelial Cells 
Advances in Dental Research  2011;23(1):38-44.
The AIDS pandemic continues. Little is understood about how HIV gains access to permissive cells across mucosal surfaces, yet such knowledge is crucial to the development of successful topical anti-HIV-1 agents and mucosal vaccines. HIV-1 rapidly internalizes and integrates into the mucosal keratinocyte genome, and integrated copies of HIV-1 persist upon cell passage. The virus does not appear to replicate, and the infection may become latent. Interactions between HIV-1 and oral keratinocytes have been modeled in the context of key environmental factors, including putative copathogens and saliva. In keratinocytes, HIV-1 internalizes within minutes; in saliva, an infectious fraction escapes inactivation and is harbored and transferable to permissive target cells for up to 48 hours. When incubated with the common oral pathogen Porphyromonas gingivalis, CCR5− oral keratinocytes signal through protease-activated receptors and Toll-like receptors to induce expression of CCR5, which increases selective uptake of infectious R5-tropic HIV-1 into oral keratinocytes and transfer to permissive cells. Hence, oral keratinocytes—like squamous keratinocytes of other tissues—may be targets for low-level HIV-1 internalization and subsequent dissemination by transfer to permissive cells.
PMCID: PMC3144042  PMID: 21441479
HIV/AIDS; epithelia; oral epithelium; infectious disease; mucosal immunity; vaccines
2.  Calprotectin Expression In Vitro by Oral Epithelial Cells Confers Resistance to Infection by Porphyromonas gingivalis 
Infection and Immunity  2001;69(7):4242-4247.
Calprotectin, an S100 calcium-binding protein with broad-spectrum antimicrobial activity in vitro, is expressed in neutrophils, monocytes, and gingival keratinocytes. In periodontitis, calprotectin appears upregulated and is detected at higher levels in gingival crevicular fluid and tissue specimens. How calprotectin contributes to the pathogenesis of periodontal diseases is unknown. To isolate the effects of calprotectin, a calprotectin-negative oral epithelial cell line was transfected with calprotectin genes to enable expression. Porphyromonas gingivalis was permitted to bind and invade transfected cells expressing calprotectin and sham transfectants. Rates of invasion into both cell lines were compared using the antibiotic protection assay. Transfected cells expressing calprotectin showed 40 to 50% fewer internalized P. gingivalis than sham transfectants. Similarly, binding to calprotectin expressing cells was reduced approximately twofold at all time points (15, 30, 45, and 60 min) as estimated by immunofluorescence analysis. Independent of invasion, however, prolonged exposure to P. gingivalis induced epithelial cell rounding and detachment from the substratum. These morphological changes were delayed, however, in cells expressing calprotectin. Using P. gingivalis protease-deficient mutants, we found that Arg-gingipain and Lys-gingipain contributed to epithelial cell rounding and detachment. In conclusion, expression of calprotectin appears to protect epithelial cells in culture against binding and invasion by P. gingivalis. In addition, cells expressing calprotectin are more resistant to detachment mediated by Arg-gingipain and Lys-gingipain. In periodontal disease, calprotectin may augment both the barrier protection and innate immune functions of the gingival epithelium to promote resistance to P. gingivalis infection.
PMCID: PMC98457  PMID: 11401960
3.  Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. 
A bacteriocin-like inhibitory substance, salivaricin A, was purified from cultures of Streptococcus salivarius 20P3 and was shown by ion spray mass spectrometry to have a molecular mass of 2,315 +/- 1.1 Da. Amino acid composition analysis demonstrated the presence of lanthionine, indicating that salivaricin A may be a member of the lantibiotic class of antibiotic substances. The sequence of eight amino acids at the N terminus of the molecule was determined by Edman degradation, and mixed oligonucleotide probes based on part of this sequence (GSGWIA) were used to detect the salivaricin A structural gene. A 6.2-kb EcoRI fragment of chromosomal DNA from strain 20P3 that hybridized with the probes was cloned, and the hybridizing region was further localized to a 379-bp DraI-AluI fragment. Analysis of the nucleotide sequence of this fragment indicated that salivaricin A is synthesized as a 51-amino-acid prepeptide that is posttranslationally modified and cleaved to give a biologically active 22-residue peptide containing one lanthionine and two beta-methyllanthionine residues. The secondary structure of presalivaricin A was predicted to be similar to that of type A lantibiotics, with a hydrophilic alpha-helical leader sequence and a propeptide region with potential for beta-turn formation and a lack of alpha-helicity. The sequence around the cleavage site of presalivaricin A differed from that of other type A lantibiotics but was similar to that of several bacteriocin-like inhibitory substances produced by lactic acid bacteria.
PMCID: PMC182229  PMID: 8357242

Results 1-3 (3)