Search tips
Search criteria

Results 1-25 (41)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Downregulation of GbpB, a Component of the VicRK Regulon, Affects Biofilm Formation and Cell Surface Characteristics of Streptococcus mutans▿ †  
Infection and Immunity  2010;79(2):786-796.
The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of gbpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties.
PMCID: PMC3028841  PMID: 21078847
2.  Achieving Probiotic Effects via Modulating Oral Microbial Ecology 
Advances in dental research  2009;21(1):53-56.
Unlike many pathogens are foreign invaders, oral “pathogens” such as Streptococcus mutans are part of the “normal” oral microbial flora. While they express certain pathogenic properties, the balance of synergistic and antagonistic interactions determines whether these çommensal pathogens cause damage or not. Recognition of these microbial ecology based pathogeneses argues for new strategies for disease treatment and prevention.
Probiotics, potentially beneficial live bacteria or yeasts, have been used to combat dental caries. This includes the application of S. mutans types that cannot produce acids or other bacteria that interfere with the pathogenic effects of S. mutans. While these approaches show therapeutic effects against S. mutans experimentally, the conversion into commercial products remains a challenge, due to safety and shelf life issues. New high-tech approaches, such as quorum sensing interference of pathogenic bacteria or targeted antimicrobial therapies, offer novel ways to achieve probiotic effects against dental caries.
PMCID: PMC2777612  PMID: 19710082
3.  Differential Expression of the Smb Bacteriocin in Streptococcus mutans Isolates ▿  
The two-component lantibiotic Smb is produced by Streptococcus mutans GS5. In the present study, we identified seven strains of S. mutans containing the smb gene cluster. These strains could be classified into high- and low-level Smb producers relative to the levels of Smb production by indicator strains in vitro. This classification was dependent upon the transcription levels of the structural smbA and smbB genes. Sequence analysis upstream of smbA in the high- and low-level Smb-producing strains revealed differences at nucleotide position −46 relative to the smbA start codon. Interestingly, the transcription start site was present upstream of the point mutation, indicating that both groups of strains have the same promoter constructs and that the differential expression of smbA and smbB mRNA occurred subsequent to transcription initiation. In addition, smbA::lacZ fusion expression was higher when it was regulated by the sequences of strains with high-level Smb activity than when it was regulated by the comparable region from strains with low-level Smb activity. Taken together, we conclude that high- or low-level Smb expression is dependent on the presence of a G or a T nucleotide at position −46 relative to the smbA translational start site in S. mutans Smb producers.
PMCID: PMC2493135  PMID: 18490504
4.  Interspecies Interactions within Oral Microbial Communities 
Summary: While reductionism has greatly advanced microbiology in the past 400 years, assembly of smaller pieces just could not explain the whole! Modern microbiologists are learning “system thinking” and “holism.” Such an approach is changing our understanding of microbial physiology and our ability to diagnose/treat microbial infections. This review uses oral microbial communities as a focal point to describe this new trend. With the common name “dental plaque,” oral microbial communities are some of the most complex microbial floras in the human body, consisting of more than 700 different bacterial species. For a very long time, oral microbiologists endeavored to use reductionism to identify the key genes or key pathogens responsible for oral microbial pathogenesis. The limitations of reductionism forced scientists to begin adopting new strategies using emerging concepts such as interspecies interaction, microbial community, biofilms, polymicrobial disease, etc. These new research directions indicate that the whole is much more than the simple sum of its parts, since the interactions between different parts resulted in many new physiological functions which cannot be observed with individual components. This review describes some of these interesting interspecies-interaction scenarios.
PMCID: PMC2168648  PMID: 18063722
5.  Biochemical and Molecular Characterization of a Novel Type of Mutanase from Paenibacillus sp. Strain RM1: Identification of Its Mutan-Binding Domain, Essential for Degradation of Streptococcus mutans Biofilms▿  
A novel type of mutanase (termed mutanase RM1) was isolated from Paenibacillus sp. strain RM1. The purified enzyme specifically hydrolyzed α-1,3-glucan (mutan) and effectively degraded biofilms formed by Streptococcus mutans, a major etiologic agent in the progression of dental caries, even following brief incubation. The nucleotide sequence of the gene for this protein contains a 3,873-bp open reading frame encoding 1,291 amino acids with a calculated molecular mass of 135 kDa. The protein contains two major domains, the N-terminal domain (277 residues) and the C-terminal domain (937 residues), separated by a characteristic sequence composed of proline and threonine repeats. The characterization of the recombinant proteins for each domain which were expressed in Escherichia coli demonstrated that the N-terminal domain had strong mutan-binding activity but no mutanase activity whereas the C-terminal domain was responsible for mutanase activity but had mutan-binding activity significantly lower than that of the intact protein. Importantly, the biofilm-degrading activity observed with the intact protein was not exhibited by either domain alone or in combination with the other. Therefore, these results indicate that the structural integrity of mutanase RM1 containing the N-terminal mutan-binding domain is required for the biofilm-degrading activity.
PMCID: PMC2394904  PMID: 18326674
6.  Heterologous Expression of the Treponema pallidum Laminin-Binding Adhesin Tp0751 in the Culturable Spirochete Treponema phagedenis▿  
Journal of Bacteriology  2008;190(7):2565-2571.
Treponema pallidum subsp. pallidum, the causative agent of syphilis, is an unculturable, genetically intractable bacterium. Here we report the use of the shuttle vector pKMR4PEMCS for the expression of a previously identified T. pallidum laminin-binding adhesin, Tp0751, in the nonadherent, culturable spirochete Treponema phagedenis. Heterologous expression of Tp0751 in T. phagedenis was confirmed via reverse transcriptase PCR analysis with tp0751 gene-specific primers and immunofluorescence analysis with Tp0751-specific antibodies; the latter assay verified the expression of the laminin-binding adhesin on the treponemal surface. Expression of Tp0751 within T. phagedenis was functionally confirmed via laminin attachment assays, in which heterologous Tp0751 expression conferred upon T. phagedenis the capacity to attach to laminin. Further, specific inhibition of the attachment of T. phagedenis heterologously expressing Tp0751 to laminin was achieved by using purified antibodies raised against recombinant T. pallidum Tp0751. This is the first report of heterologous expression of a gene from an unculturable treponeme in T. phagedenis. This novel methodology will significantly advance the field of syphilis research by allowing targeted investigations of T. pallidum proteins purported to play a role in pathogenesis, and specifically host cell attachment, in the nonadherent spirochete T. phagedenis.
PMCID: PMC2293214  PMID: 18263731
7.  Role of Bacteriocin Immunity Proteins in the Antimicrobial Sensitivity of Streptococcus mutans▿  
Journal of Bacteriology  2006;188(23):8095-8102.
Bacteria utilize quorum-sensing systems to modulate environmental stress responses. The quorum-sensing system of Streptococcus mutans is mediated by the competence-stimulating peptide (CSP), whose precursor is encoded by the comC gene. A comC mutant of strain GS5 exhibited enhanced antimicrobial sensitivity to a wide variety of different agents. Since the addition of exogenous CSP did not complement this phenotype, it was determined that the increased tetracycline, penicillin, and triclosan sensitivities resulted from repression of the putative bacteriocin immunity protein gene, bip, which is located immediately upstream from comC. We further demonstrated that the inactivation of bip or smbG, another bacteriocin immunity protein gene present within the smb operon in S. mutans GS5, affected sensitivity to a variety of antimicrobial agents. Furthermore, both the bip and smbG genes were upregulated in the presence of low concentrations of antibiotics and were induced during biofilm formation relative to in planktonic cells. These results suggest, for the first time, that the antimicrobial sensitivity of a bacterium can be modulated by some of the putative bacteriocin immunity proteins expressed by the organism. The implications of these observations for the evolution of bacteriocin immunity protein genes as well as for potential new chemotherapeutic strategies are discussed.
PMCID: PMC1698205  PMID: 16997961
8.  Porphyromonas gingivalis Vesicles Enhance Attachment, and the Leucine-Rich Repeat BspA Protein Is Required for Invasion of Epithelial Cells by “Tannerella forsythia”  
Infection and Immunity  2006;74(9):5023-5028.
The human oral cavity harbors more than 500 species of bacteria. Periodontitis, a bacterially induced inflammatory disease that leads to tooth loss, is believed to result from infection by a select group of gram-negative periodontopathogens that includes Porphyromonas gingivalis, Treponema denticola, and “Tannerella forsythia” (opinion on name change from Tannerella forsythensis pending; formerly Bacteroides forsythus). Epithelial cell invasion by periodontopathogens is considered to be an important virulence mechanism for evasion of the host defense responses. Further, the epithelial cells with invading bacteria also serve as reservoirs important in recurrent infections. The present study was therefore undertaken to address the epithelial cell adherence and invasion properties of T. forsythia and the role of the cell surface-associated protein BspA in these processes. Further, we were interested in determining if P. gingivalis, one of the pathogens frequently found associated in disease, or its outer membrane vesicles (OMVs) could modulate the epithelial cell adherence and invasion abilities of T. forsythia. Here we show that epithelial cell attachment and invasion by T. forsythia are dependent on the BspA protein. In addition, P. gingivalis or its OMVs enhance the attachment and invasion of T. forsythia to epithelial cells. Thus, interactions between these two bacteria may play important roles in virulence by promoting host cell attachment and invasion.
PMCID: PMC1594857  PMID: 16926393
9.  A Pleiotropic Regulator, Frp, Affects Exopolysaccharide Synthesis, Biofilm Formation, and Competence Development in Streptococcus mutans  
Infection and Immunity  2006;74(8):4581-4589.
Exopolysaccharide synthesis, biofilm formation, and competence are important physiologic functions and virulence factors for Streptococcus mutans. In this study, we report the role of Frp, a transcriptional regulator, on the regulation of these traits crucial to pathogenesis. An Frp-deficient mutant showed decreased transcription of several genes important in virulence, including those encoding fructosyltransferase (Ftf), glucosyltransferase B (GtfB), and GtfC, by reverse transcription and quantitative real-time PCR. Expression of Ftf was decreased in the frp mutant, as assessed by Western blotting as well as by the activity assays. Frp deficiency also inhibited the production of GtfB in the presence of glucose and sucrose as well as the production of GtfC in the presence of glucose. As a consequence of the effects on GtfB and -C, sucrose-induced biofilm formation was decreased in the frp mutant. The expression of competence mediated by the competence-signaling peptide (CSP) system, as assessed by comC gene transcription, was attenuated in the frp mutant. As a result, the transformation efficiency was decreased in the frp mutant but was partially restored by adding synthetic CSP. Transcription of the frp gene was significantly increased in the frp mutant under all conditions tested, indicating that frp transcription is autoregulated. Furthermore, complementation of the frp gene in the frp mutant restored transcription of the affected genes to levels similar to those in the wild-type strain. These results suggest that Frp is a novel pleiotropic effector of multiple cellular functions and is involved in the modulation of exopolysaccharide synthesis, sucrose-dependent biofilm formation, and competence development.
PMCID: PMC1539613  PMID: 16861645
10.  Virulence properties of cariogenic bacteria 
BMC Oral Health  2006;6(Suppl 1):S11.
The importance of Streptococcus mutans in the etiology of dental caries has been well documented. However, there is growing recognition that the cariogenic potential of dental plaque may be determined by the composite interactions of the total plaque bacteria rather than solely the virulence properties of a single organism. This study will examine how the interactions of S. mutans with other biofilm constituents may influence the cariogenicity of plaque samples.
In order to begin to investigate the effects of nonmutans streptococci on the cariogenic potential of S. mutans, we have examined the effects of Streptococcus gordonii on the virulence properties of the former organisms. These studies have indicated that S.gordonii can attenuate several potential virulence properties of S. mutans including bacteriocin production, genetic transformation, and biofilm formation. Therefore, modulation of the interactions between plaque bacteria might be a novel approach for attenuating dental caries initiation.
PMCID: PMC2147595  PMID: 16934112
11.  Identification and Characterization of a Novel Adhesin Unique to Oral Fusobacteria 
Journal of Bacteriology  2005;187(15):5330-5340.
Fusobacterium nucleatum is a gram-negative anaerobe that is prevalent in periodontal disease and infections of different parts of the body. The organism has remarkable adherence properties, binding to partners ranging from eukaryotic and prokaryotic cells to extracellular macromolecules. Understanding its adherence is important for understanding the pathogenesis of F. nucleatum. In this study, a novel adhesin, FadA (Fusobacterium adhesin A), was demonstrated to bind to the surface proteins of the oral mucosal KB cells. FadA is composed of 129 amino acid (aa) residues, including an 18-aa signal peptide, with calculated molecular masses of 13.6 kDa for the intact form and 12.6 kDa for the secreted form. It is highly conserved among F. nucleatum, Fusobacterium periodonticum, and Fusobacterium simiae, the three most closely related oral species, but is absent in the nonoral species, including Fusobacterium gonidiaformans, Fusobacterium mortiferum, Fusobacterium naviforme, Fusobacterium russii, and Fusobacterium ulcerans. In addition to FadA, F. nucleatum ATCC 25586 and ATCC 49256 also encode two paralogues, FN1529 and FNV2159, each sharing 31% identity with FadA. A double-crossover fadA deletion mutant, F. nucleatum 12230-US1, was constructed by utilizing a novel sonoporation procedure. The mutant had a slightly slower growth rate, yet its binding to KB and Chinese hamster ovarian cells was reduced by 70 to 80% compared to that of the wild type, indicating that FadA plays an important role in fusobacterial colonization in the host. Furthermore, due to its uniqueness to oral Fusobacterium species, fadA may be used as a marker to detect orally related fusobacteria. F. nucleatum isolated from other parts of the body may originate from the oral cavity.
PMCID: PMC1196005  PMID: 16030227
12.  Inducible Antisense RNA Expression in the Characterization of Gene Functions in Streptococcus mutans  
Infection and Immunity  2005;73(6):3568-3576.
In order to examine gene function in Streptococcus mutans, we have recently initiated an antisense RNA strategy. Toward this end, we have now constructed and evaluated three Escherichia coli-S. mutans shuttle expression vectors with the fruA and scrB promoters from S. mutans, as well as the tetR-controlled tetO promoter from Staphylococcus aureus. Among these, the tetO/tetR system proved to be the most tightly controlled promoter. By using this shuttle plasmid system, modulation of gene function by inducible antisense RNA expression was demonstrated for comC antisense fragments of different sizes as well as for distinct gtfB antisense fragments. It was demonstrated that the size, but not the relative position, of an antisense DNA fragment is important in mediating the antisense phenomenon. Furthermore, by constructing and screening random DNA libraries with the tet expression shuttle system, 78 growth-retarded transformants harboring antisense DNA fragments were also identified. Almost all of them corresponded to homologous essential genes in other bacteria. In addition, a novel essential gene, the coaE gene, encoding dephospho-coenzyme A kinase, which is involved in the final step of coenzyme A catabolism in S. mutans, was identified and characterized. These results suggest that the antisense RNA strategy can be useful for identifying novel essential genes in S. mutans bacteria as well as further characterizing the physiology (including potential virulence factors) of these organisms.
PMCID: PMC1111864  PMID: 15908386
13.  LuxS-Based Signaling Affects Streptococcus mutans Biofilm Formation 
Streptococcus mutans is implicated as a major etiological agent in human dental caries, and one of the important virulence properties of this organism is its ability to form biofilms (dental plaque) on tooth surfaces. We examined the role of autoinducer-2 (AI-2) on S. mutans biofilm formation by constructing a GS-5 luxS-null mutant. Biofilm formation by the luxS mutant in 0.5% sucrose defined medium was found to be markedly attenuated compared to the wild type. Scanning electron microscopy also revealed that biofilms of the luxS mutant formed larger clumps in sucrose medium compared to the parental strain. Therefore, the expression of glucosyltransferase genes was examined and the gtfB and gtfC genes, but not the gtfD gene, in the luxS mutant were upregulated in the mid-log growth phase. Furthermore, we developed a novel two-compartment system to monitor AI-2 production by oral streptococci and periodontopathic bacteria. The biofilm defect of the luxS mutant was complemented by strains of S. gordonii, S. sobrinus, and S. anginosus; however, it was not complemented by S. oralis, S. salivarius, or S. sanguinis. Biofilm formation by the luxS mutant was also complemented by Porphyromonas gingivalis 381 and Actinobacillus actinomycetemcomitans Y4 but not by a P. gingivalis luxS mutant. These results suggest that the regulation of the glucosyltransferase genes required for sucrose-dependent biofilm formation is regulated by AI-2. Furthermore, these results provide further confirmation of previous proposals that quorum sensing via AI-2 may play a significant role in oral biofilm formation.
PMCID: PMC1087550  PMID: 15870324
14.  Genetic Analysis of a Unique Bacteriocin, Smb, Produced by Streptococcus mutans GS5 
A dipeptide lantibiotic, named Smb, in Streptococcus mutans GS5 was characterized by molecular genetic approaches. The Smb biosynthesis gene locus is encoded by a 9.5-kb region of chromosomal DNA and consists of seven genes in the order smbM1, -T, -F, -M2, -G, -A, -B. This operon is not present in some other strains of S. mutans, including strain UA159. The genes encoding Smb were identified as smbA and smbB. Inactivation of smbM1, smbA, or smbB attenuated the inhibition of the growth of the indicator strain RP66, confirming an essential role for these genes in Smb expression. Mature Smb likely consists of the 30-amino-acid SmbA together with the 32-amino-acid SmbB. SmbA exhibited similarity with the mature lantibiotic lacticinA2 from Lactococcus lactis, while SmbB was similar to the mersacidin-like peptides from Bacillus halodurans and L. lactis. We also demonstrated that Smb expression is induced by the competence-stimulating peptide (CSP) and that a com box-like sequence is located in the smb promoter region. These results suggest that Smb belongs to the class I bacteriocin family, and its expression is dependent on CSP-induced quorum sensing.
PMCID: PMC547247  PMID: 15673730
15.  Interactions between Oral Bacteria: Inhibition of Streptococcus mutans Bacteriocin Production by Streptococcus gordonii 
Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.
PMCID: PMC544254  PMID: 15640209
17.  Porphyromonas gingivalis Strain-Dependent Activation of Human Endothelial Cells  
Infection and Immunity  2004;72(10):5910-5918.
Porphyromonas gingivalis is an important bacterium involved in periodontal diseases. Colonization by periodontopathogens has been associated with severe local inflammatory reactions in the connective tissue. In this study we characterized P. gingivalis-mediated infection and activation of human umbilical vein endothelial cells by using two strains of different virulence capacities, strains ATCC 53977 and DSMZ 20709. Both strains were able to adhere to and infect endothelial cells with an infection rate of 0.48% for ATCC 53977 and 0.007% for DSMZ 20709. The triggering of two signal transduction pathways in P. gingivalis-infected endothelial cells was demonstrated for both strains, with a rapid increase of p38 mitogen-activated protein kinase phosphorylation and a more delayed degradation of IκBα, followed by nuclear translocation of NF-κB. In addition, both strains induced enhanced expression of endothelial adhesion molecules E-selectin and intracellular adhesion molecule 1 (ICAM-1). Target cell activation was independent of bacterial fimbriae expression since the fimA knockout strain A7436 ΔfimA induced the same level of ICAM-1 as the corresponding wild type (A7436-WT). Thus, two P. gingivalis strains, ATCC 53799 and DSMZ 20709, infect endothelial cells and trigger signaling cascades leading to endothelial activation, which in turn may result in or promote severe local and systemic inflammation.
PMCID: PMC517532  PMID: 15385493
18.  Multiple Functions of the Leucine-Rich Repeat Protein LrrA of Treponema denticola  
Infection and Immunity  2004;72(8):4619-4627.
The gene lrrA, encoding a leucine-rich repeat protein, LrrA, that contains eight consensus tandem repeats of 23 amino acid residues, has been identified in Treponema denticola ATCC 35405. A leucine-rich repeat is a generally useful protein-binding motif, and proteins containing this repeat are typically involved in protein-protein interactions. Southern blot analysis demonstrated that T. denticola ATCC 35405 expresses the lrrA gene, but the gene was not identified in T. denticola ATCC 33520. In order to analyze the functions of LrrA in T. denticola, an lrrA-inactivated mutant of strain ATCC 35405 and an lrrA gene expression transformant of strain ATCC 33520 were constructed. Characterization of the mutant and transformant demonstrated that LrrA is associated with the extracytoplasmic fraction of T. denticola and expresses multifunctional properties. It was demonstrated that the attachment of strain ATCC 35405 to HEp-2 cell cultures and coaggregation with Tannerella forsythensis were attenuated by the lrrA mutation. In addition, an in vitro binding assay demonstrated specific binding of LrrA to a portion of the Tannerella forsythensis leucine-rich repeat protein, BspA, which is mediated by the N-terminal region of LrrA. It was also observed that the lrrA mutation caused a reduction of swarming in T. denticola ATCC 35405 and consequently attenuated tissue penetration. These results suggest that the leucine-rich repeat protein LrrA plays a role in the attachment and penetration of human epithelial cells and coaggregation with Tannerella forsythensis. These properties may play important roles in the virulence of T. denticola.
PMCID: PMC470683  PMID: 15271922
19.  Correlation between Detection Rates of Periodontopathic Bacterial DNA in Carotid Coronary Stenotic Artery Plaque and in Dental Plaque Samples 
Journal of Clinical Microbiology  2004;42(3):1313-1315.
Utilizing PCR, the 16S rRNA detection rates for Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Treponema denticola, and Campylobacter rectus in samples of stenotic coronary artery plaques were determined to be 21.6, 23.3, 5.9, 23.5, and 15.7%, respectively. The detection rates for P. gingivalis and C. rectus correlated with their presence in subgingival plaque.
PMCID: PMC356820  PMID: 15004106
20.  Control of Enzyme IIscr and Sucrose-6-Phosphate Hydrolase Activities in Streptococcus mutans by Transcriptional Repressor ScrR Binding to the cis-Active Determinants of the scr Regulon 
Journal of Bacteriology  2003;185(19):5791-5799.
In Streptococcus mutans, enzyme IIscr and sucrose-6-phosphate hydrolase are two important enzymes in the transport and metabolism of dietary sucrose. The scr regulon of S. mutans is composed of three genes, scrA and scrB, which code for enzyme IIscr and sucrose-6-phosphate hydrolase, respectively, and scrR, which codes for a GalR-LacI-type transcription regulator. It was previously shown that expression of both scrA and scrB is similarly induced by sucrose. Mutation in the scrR gene resulted in increased expression of scrB relative to that in the wild-type strain. In this study, we employed DNA mobility shift and DNase I protection assays with a purified ScrR-histidine tag fusion protein to examine the DNA binding properties of ScrR to the promoter regions of the scrA and scrB genes. The results showed that ScrR bound specifically to the promoter regions of both scrA and scrB. Two regions with high affinity for ScrR in the promoter sequences of the scrA and scrB genes were identified by DNase I protection assays. One, OC, which includes a 20-bp imperfect inverted-repeat sequence, is located between the two promoters, and the other, OB, is located within the scrB promoter region containing a 37-bp imperfect direct-repeat sequence. Mutations of OB and OC resulted in constitutive transcription and expression of both the scrA and scrB genes. Our results indicated that S. mutans coordinates the activities of enzyme IIscr and sucrose-6-phosphate hydrolase by transcriptional repressor ScrR binding to the promoter regions of the scr regulon.
PMCID: PMC193960  PMID: 13129950
21.  The Stress-Responsive dgk Gene from Streptococcus mutans Encodes a Putative Undecaprenol Kinase Activity  
Infection and Immunity  2003;71(4):1938-1943.
We analyzed a previously constructed stress-sensitive Streptococcus mutans mutant Tn-1 strain resulting from disruption by transposon Tn916 of a gene encoding a protein exhibiting amino acid sequence similarity to the Escherichia coli diacylglycerol kinase. It was confirmed that the mutation led to significantly reduced lipid kinase activity, while expression of the intact gene on a plasmid restored both kinase activity and the wild-type phenotype. Further analysis revealed that the product of the dgk gene in S. mutans predominantly recognizes a lipid substrate other than diacylglycerol, most likely undecaprenol, as demonstrated by its efficient phosphorylation and the resistance of the product of the reaction to saponification. The physiological role of the product of the dgk gene as a putative undecaprenol kinase was further supported by a significantly higher sensitivity of the mutant to bacitracin compared with that of the parental strain.
PMCID: PMC152025  PMID: 12654811
22.  Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation†  
Applied and Environmental Microbiology  2002;68(12):6283-6291.
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.
PMCID: PMC134449  PMID: 12450853
23.  Role of Polyphosphate Kinase in Biofilm Formation by Porphyromonas gingivalis  
Infection and Immunity  2002;70(8):4708-4715.
In order to assess the role of polyphosphate kinase (PPK) in the physiology of Porphyromonas gingivalis, a ppk gene mutant, CW120, was constructed and characterized. P. gingivalis was demonstrated to synthesize short-chain polyphosphate (polyP) but not long-chain polyP. CW120 failed to survive in the stationary phase as well as the parental cell did, and it was attenuated in biofilm formation on polyvinylchloride and glass surfaces. Furthermore, the complementation by insertion of an intact copy of the ppk gene into the mutant CW120 restored its biofilm formation and stationary-phase survival. These results suggest that PPK may be important for incorporation of these organisms into subgingival plaque in the human oral cavity.
PMCID: PMC128176  PMID: 12117989
24.  Complementation of a Treponema denticola flgE Mutant with a Novel Coumermycin A1-Resistant T. denticola Shuttle Vector System  
Infection and Immunity  2002;70(4):2233-2237.
By using the mutated gyrB gene from a spontaneous coumermycin A1-resistant Treponema denticola, an Escherichia coli-T. denticola shuttle vector that renders T. denticola resistant to coumermycin was constructed. The complete T. denticola flgE gene was cloned into the shuttle vector pKMCou, and the vector was transformed into the T. denticola ATCC 33520 flgE erythromycin-resistant knockout mutant HL210. The coumermycin-resistant transformants were motile and restored FlgE activity. This complementation system should prove useful in studying the virulence factors of T. denticola and uncultivable pathogenic spirochetes.
PMCID: PMC127883  PMID: 11895994
25.  Development of a Gene Inactivation System for Bacteroides forsythus: Construction and Characterization of a BspA Mutant 
Infection and Immunity  2001;69(7):4686-4690.
Bacteroides forsythus is a gram-negative anaerobic bacterium associated with periodontitis. The bspA gene encoding a cell surface associated leucine-rich repeat protein (BspA) involved in adhesion to fibronectin and fibrinogen was recently cloned from this bacterium in our laboratory. We now describe the construction of a BspA-defective mutant of B. forsythus. This is the first report describing the generation of a specific gene knockout mutant of B. forsythus, and this procedure should be useful in establishing the identity of virulence-associated factors in these organisms.
PMCID: PMC98550  PMID: 11402017

Results 1-25 (41)