PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
author:("salix, naomi")
1.  Intelligent Bar Chart Plagiarism Detection in Documents 
The Scientific World Journal  2014;2014:612787.
This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.
doi:10.1155/2014/612787
PMCID: PMC4182899  PMID: 25309952
2.  A New Graph-Based Molecular Descriptor Using the Canonical Representation of the Molecule 
The Scientific World Journal  2014;2014:286974.
Molecular similarity is a pervasive concept in drug design. The basic idea underlying molecular similarity is the similar property principle, which states that structurally similar molecules will exhibit similar physicochemical and biological properties. In this paper, a new graph-based molecular descriptor (GBMD) is introduced. The GBMD is a new method of obtaining a rough description of 2D molecular structure in textual form based on the canonical representations of the molecule outline shape and it allows rigorous structure specification using small and natural grammars. Simulated virtual screening experiments with the MDDR database show clearly the superiority of the graph-based descriptor compared to many standard descriptors (ALOGP, MACCS, EPFP4, CDKFP, PCFP, and SMILE) using the Tanimoto coefficient (TAN) and the basic local alignment search tool (BLAST) when searches were carried.
doi:10.1155/2014/286974
PMCID: PMC4130360  PMID: 25140330
3.  Condorcet and borda count fusion method for ligand-based virtual screening 
Background
It is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database.
Results
The Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints.
Conclusions
Simulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought.
doi:10.1186/1758-2946-6-19
PMCID: PMC4026830  PMID: 24883114
Similarity searching; Virtual screening; Similarity coefficients; Data fusion
4.  Condorcet and borda count fusion method for ligand-based virtual screening 
Background
It is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database.
Results
The Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints.
Conclusions
Simulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought.
doi:10.1186/1758-2946-6-19
PMCID: PMC4026830  PMID: 24883114
Similarity searching; Virtual screening; Similarity coefficients; Data fusion
5.  Chemical named entities recognition: a review on approaches and applications 
The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.
doi:10.1186/1758-2946-6-17
PMCID: PMC4022577  PMID: 24834132
Chemical entities; Information extraction; Chemical names
6.  Chemical named entities recognition: a review on approaches and applications 
The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.
Electronic supplementary material
The online version of this article (doi:10.1186/1758-2946-6-17) contains supplementary material, which is available to authorized users.
doi:10.1186/1758-2946-6-17
PMCID: PMC4022577  PMID: 24834132
Chemical entities; Information extraction; Chemical names
8.  Voting-based consensus clustering for combining multiple clusterings of chemical structures 
Background
Although many consensus clustering methods have been successfully used for combining multiple classifiers in many areas such as machine learning, applied statistics, pattern recognition and bioinformatics, few consensus clustering methods have been applied for combining multiple clusterings of chemical structures. It is known that any individual clustering method will not always give the best results for all types of applications. So, in this paper, three voting and graph-based consensus clusterings were used for combining multiple clusterings of chemical structures to enhance the ability of separating biologically active molecules from inactive ones in each cluster.
Results
The cumulative voting-based aggregation algorithm (CVAA), cluster-based similarity partitioning algorithm (CSPA) and hyper-graph partitioning algorithm (HGPA) were examined. The F-measure and Quality Partition Index method (QPI) were used to evaluate the clusterings and the results were compared to the Ward’s clustering method. The MDL Drug Data Report (MDDR) dataset was used for experiments and was represented by two 2D fingerprints, ALOGP and ECFP_4. The performance of voting-based consensus clustering method outperformed the Ward’s method using F-measure and QPI method for both ALOGP and ECFP_4 fingerprints, while the graph-based consensus clustering methods outperformed the Ward’s method only for ALOGP using QPI. The Jaccard and Euclidean distance measures were the methods of choice to generate the ensembles, which give the highest values for both criteria.
Conclusions
The results of the experiments show that consensus clustering methods can improve the effectiveness of chemical structures clusterings. The cumulative voting-based aggregation algorithm (CVAA) was the method of choice among consensus clustering methods.
doi:10.1186/1758-2946-4-37
PMCID: PMC3541359  PMID: 23244782
9.  CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures 
Advances in Bioinformatics  2012;2012:849830.
Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD) is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.
doi:10.1155/2012/849830
PMCID: PMC3474208  PMID: 23091487
10.  Ligand-Based Virtual Screening Using Bayesian Inference Network and Reweighted Fragments 
The Scientific World Journal  2012;2012:410914.
Many of the similarity-based virtual screening approaches assume that molecular fragments that are not related to the biological activity carry the same weight as the important ones. This was the reason that led to the use of Bayesian networks as an alternative to existing tools for similarity-based virtual screening. In our recent work, the retrieval performance of the Bayesian inference network (BIN) was observed to improve significantly when molecular fragments were reweighted using the relevance feedback information. In this paper, a set of active reference structures were used to reweight the fragments in the reference structure. In this approach, higher weights were assigned to those fragments that occur more frequently in the set of active reference structures while others were penalized. Simulated virtual screening experiments with MDL Drug Data Report datasets showed that the proposed approach significantly improved the retrieval effectiveness of ligand-based virtual screening, especially when the active molecules being sought had a high degree of structural heterogeneity.
doi:10.1100/2012/410914
PMCID: PMC3353468  PMID: 22623895

Results 1-10 (10)