PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Comparative Study of Two Box H/ACA Ribonucleoprotein Pseudouridine-Synthases: Relation between Conformational Dynamics of the Guide RNA, Enzyme Assembly and Activity 
PLoS ONE  2013;8(7):e70313.
Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10–L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.
doi:10.1371/journal.pone.0070313
PMCID: PMC3726423  PMID: 23922977
2.  RNA at 92°C 
RNA Biology  2013;10(7):1211-1220.
The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi is investigated using the RNA-seq technology. A dedicated computational pipeline analyzes RNA-seq reads and prior genome annotation to identify small RNAs, untranslated regions of mRNAs, and cis-encoded antisense transcripts. Unlike other archaea, such as Sulfolobus and Halobacteriales, P. abyssi produces few leaderless mRNA transcripts. Antisense transcription is widespread (215 transcripts) and targets protein-coding genes that appear to evolve more rapidly than average genes. We identify at least three novel H/ACA-like guide RNAs among the newly characterized non-coding RNAs. Long 5′ UTRs in mRNAs of ribosomal proteins and amino-acid biosynthesis genes strongly suggest the presence of cis-regulatory leaders in these mRNAs. We selected a high-interest subset of non-coding RNAs based on their strong promoters, high GC-content, phylogenetic conservation, or abundance. Some of the novel small RNAs and long 5′ UTRs display high GC contents, suggesting unknown structural RNA functions. However, we were surprised to observe that most of the high-interest RNAs are AU-rich, which suggests an absence of stable secondary structure in the high-temperature environment of P. abyssi. Yet, these transcripts display other hallmarks of functionality, such as high expression or high conservation, which leads us to consider possible RNA functions that do not require extensive secondary structure.
doi:10.4161/rna.25567
PMCID: PMC3849170  PMID: 23884177
transcriptome; hyperthermophile; archaea; non-coding RNA
3.  BRASERO: A Resource for Benchmarking RNA Secondary Structure Comparison Algorithms 
Advances in Bioinformatics  2012;2012:893048.
The pairwise comparison of RNA secondary structures is a fundamental problem, with direct application in mining databases for annotating putative noncoding RNA candidates in newly sequenced genomes. An increasing number of software tools are available for comparing RNA secondary structures, based on different models (such as ordered trees or forests, arc annotated sequences, and multilevel trees) and computational principles (edit distance, alignment). We describe here the website BRASERO that offers tools for evaluating such software tools on real and synthetic datasets.
doi:10.1155/2012/893048
PMCID: PMC3366197  PMID: 22675348
4.  Deficiency of the tRNATyr:Ψ35-synthase aPus7 in Archaea of the Sulfolobales order might be rescued by the H/ACA sRNA-guided machinery 
Nucleic Acids Research  2009;37(4):1308-1322.
Up to now, Ψ formation in tRNAs was found to be catalysed by stand-alone enzymes. By computational analysis of archaeal genomes we detected putative H/ACA sRNAs, in four Sulfolobales species and in Aeropyrum pernix, that might guide Ψ35 formation in pre-tRNATyr(GUA). This modification is achieved by Pus7p in eukarya. The validity of the computational predictions was verified by in vitro reconstitution of H/ACA sRNPs using the identified Sulfolobus solfataricus H/ACA sRNA. Comparison of Pus7-like enzymes encoded by archaeal genomes revealed amino acid substitutions in motifs IIIa and II in Sulfolobales and A. pernix Pus7-like enzymes. These conserved RNA:Ψ-synthase- motifs are essential for catalysis. As expected, the recombinant Pyrococcus abyssi aPus7 was fully active and acted at positions 35 and 13 and other positions in tRNAs, while the recombinant S. solfataricus aPus7 was only found to have a poor activity at position 13. We showed that the presence of an A residue 3′ to the target U residue is required for P. abyssi aPus7 activity, and that this is not the case for the reconstituted S. solfataricus H/ACA sRNP. In agreement with the possible formation of Ψ35 in tRNATyr(GUA) by aPus7 in P. abyssi and by an H/ACA sRNP in S. solfataricus, the A36G mutation in the P. abyssi tRNATyr(GUA) abolished Ψ35 formation when using P. abyssi extract, whereas the A36G substitution in the S. solfataricus pre-tRNATyr did not affect Ψ35 formation in this RNA when using an S. solfataricus extract.
doi:10.1093/nar/gkn1037
PMCID: PMC2651775  PMID: 19139072
5.  Combined in silico and experimental identification of the Pyrococcus abyssi H/ACA sRNAs and their target sites in ribosomal RNAs 
Nucleic Acids Research  2008;36(8):2459-2475.
How far do H/ACA sRNPs contribute to rRNA pseudouridylation in Archaea was still an open question. Hence here, by computational search in three Pyrococcus genomes, we identified seven H/ACA sRNAs and predicted their target sites in rRNAs. In parallel, we experimentally identified 17 Ψ residues in P. abyssi rRNAs. By in vitro reconstitution of H/ACA sRNPs, we assigned 15 out of the 17 Ψ residues to the 7 identified H/ACA sRNAs: one H/ACA motif can guide up to three distinct pseudouridylations. Interestingly, by using a 23S rRNA fragment as the substrate, one of the two remaining Ψ residues could be formed in vitro by the aCBF5/aNOP10/aGAR1 complex without guide sRNA. Our results shed light on structural constraints in archaeal H/ACA sRNPs: the length of helix H2 is of 5 or 6 bps, the distance between the ANA motif and the targeted U residue is of 14 or 15 nts, and the stability of the interaction formed by the substrate rRNA and the 3′-guide sequence is more important than that formed with the 5′-guide sequence. Surprisingly, we showed that a sRNA–rRNA interaction with the targeted uridine in a single-stranded 5′-UNN-3′ trinucleotide instead of the canonical 5′-UN-3′ dinucleotide is functional.
doi:10.1093/nar/gkn077
PMCID: PMC2377435  PMID: 18304947
6.  The ERPIN server: an interface to profile-based RNA motif identification 
Nucleic Acids Research  2004;32(Web Server issue):W160-W165.
ERPIN is an RNA motif identification program that takes an RNA sequence alignment as an input and identifies related sequences using a profile-based dynamic programming algorithm. ERPIN differs from other RNA motif search programs in its ability to capture subtle biases in the training set and produce highly specific and sensitive searches, while keeping CPU requirements at a practical level. In its latest version, ERPIN also computes E-values, which tell biologists how likely they are to encounter a specific sequence match by chance—a useful indication of biological significance. We present here the ERPIN online search interface (http://tagc.univ-mrs.fr/erpin/). This web server automatically performs ERPIN searches for different RNA genes or motifs, using predefined training sets and search parameters. With a couple of clicks, users can analyze an entire bacterial genome or a genomic segment of up to 5Mb for the presence of tRNAs, 5S rRNAs, SRP RNA, C/D box snoRNAs, hammerhead motifs, miRNAs and other motifs. Search results are displayed with sequence, score, position, E-value and secondary structure graphics. An example of a complete genome scan is provided, as well as an evaluation of run times and specificity/sensitivity information for all available motifs.
doi:10.1093/nar/gkh418
PMCID: PMC441556  PMID: 15215371

Results 1-6 (6)