Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  EuDBase: An online resource for automated EST analysis pipeline (ESTFrontier) and database for red seaweed Eucheuma denticulatum 
Bioinformation  2011;7(4):157-162.
Functional genomics has proven to be an efficient tool in identifying genes involved in various biological functions. However the availability of commercially important seaweed Eucheuma denticulatum functional resources is still limited. EuDBase is the first seaweed online repository that provides integrated access to ESTs of Eucheuma denticulatum generated from samples collected from Kudat and Semporna in Sabah, Malaysia. The database stored 10,031 ESTs that are clustered and assembled into 2,275 unique transcripts (UT) and 955 singletons. Raw data were automatically processed using ESTFrontier, an in-house automated EST analysis pipeline. Data was collected in MySQL database. Web interface is implemented using PHP and it allows browsing and querying EuDBase through search engine. Data is searchable via BLAST hit, domain search, Gene Ontology or KEGG Pathway. A user-friendly interface allows the identification of sequences either using a simple text query or similarity search. The development of EuDBase is initiated to store, manage and analyze the E. denticulatum ESTs and to provide accumulative digital resources for the use of global scientific community. EuDBase is freely available from
PMCID: PMC3218516  PMID: 22102771
2.  Functional Characterization of Sesquiterpene Synthase from Polygonum minus 
The Scientific World Journal  2014;2014:840592.
Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of ╬▓-sesquiphellandrene.
PMCID: PMC3942395  PMID: 24678279
3.  Draft Genome Sequences of Four Nosocomial Methicillin-Resistant Staphylococcus aureus (MRSA) Strains (PPUKM-261-2009, PPUKM-332-2009, PPUKM-377-2009, and PPUKM-775-2009) Representative of Dominant MRSA Pulsotypes Circulating in a Malaysian University Teaching Hospital 
Genome Announcements  2013;1(1):e00103-12.
Here, we report the draft genome sequences of four nosocomial methicillin-resistant Staphylococcus aureus strains (PPUKM-261-2009, PPUKM-332-2009, PPUKM-377-2009, and PPUKM-775-2009) isolated from a university teaching hospital in Malaysia. Three of the strains belong to sequence type 239 (ST239), which has been associated with sustained hospital epidemics worldwide.
PMCID: PMC3569319  PMID: 23405328
4.  CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures 
Advances in Bioinformatics  2012;2012:849830.
Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD) is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.
PMCID: PMC3474208  PMID: 23091487
5.  Flavonoid Biosynthesis Genes Putatively Identified in the Aromatic Plant Polygonum minus via Expressed Sequences Tag (EST) Analysis 
P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
PMCID: PMC3317681  PMID: 22489118
cDNA library; expressed sequence tags; flavonoid biosynthesis; Polygonum minus; quantitative real-time PCR
6.  A protein short motif search tool using amino acid sequence and their secondary structure assignment 
Bioinformation  2011;7(6):304-306.
We present the development of a web server, a protein short motif search tool that allows users to simultaneously search for a protein sequence motif and its secondary structure assignments. The web server is able to query very short motifs searches against PDB structural data from the RCSB Protein Databank, with the users defining the type of secondary structures of the amino acids in the sequence motif. The output utilises 3D visualisation ability that highlights the position of the motif in the structure and on the corresponding sequence. Researchers can easily observe the locations and conformation of multiple motifs among the results. Protein short motif search also has an application programming interface (API) for interfacing with other bioinformatics tools.
The database is available for free at
PMCID: PMC3280500  PMID: 22355226
Protein short motif search; protein secondary structure; visualization; application programming interface (API)
7.  Simulation of a Petri net-based Model of the Terpenoid Biosynthesis Pathway 
BMC Bioinformatics  2010;11:83.
The development and simulation of dynamic models of terpenoid biosynthesis has yielded a systems perspective that provides new insights into how the structure of this biochemical pathway affects compound synthesis. These insights may eventually help identify reactions that could be experimentally manipulated to amplify terpenoid production. In this study, a dynamic model of the terpenoid biosynthesis pathway was constructed based on the Hybrid Functional Petri Net (HFPN) technique. This technique is a fusion of three other extended Petri net techniques, namely Hybrid Petri Net (HPN), Dynamic Petri Net (HDN) and Functional Petri Net (FPN).
The biological data needed to construct the terpenoid metabolic model were gathered from the literature and from biological databases. These data were used as building blocks to create an HFPNe model and to generate parameters that govern the global behaviour of the model. The dynamic model was simulated and validated against known experimental data obtained from extensive literature searches. The model successfully simulated metabolite concentration changes over time (pt) and the observations correlated with known data. Interactions between the intermediates that affect the production of terpenes could be observed through the introduction of inhibitors that established feedback loops within and crosstalk between the pathways.
Although this metabolic model is only preliminary, it will provide a platform for analysing various high-throughput data, and it should lead to a more holistic understanding of terpenoid biosynthesis.
PMCID: PMC2838867  PMID: 20144236
8.  Construction of a polycystic ovarian syndrome (PCOS) pathway based on the interactions of PCOS-related proteins retrieved from bibliomic data 
Polycystic ovary syndrome (PCOS) is a complex but frequently occurring endocrine abnormality. PCOS has become one of the leading causes of oligo-ovulatory infertility among premenopausal women. The definition of PCOS remains unclear because of the heterogeneity of this abnormality, but it is associated with insulin resistance, hyperandrogenism, obesity and dyslipidaemia. The main purpose of this study was to identify possible candidate genes involved in PCOS. Several genomic approaches, including linkage analysis and microarray analysis, have been used to look for candidate PCOS genes. To obtain a clearer view of the mechanism of PCOS, we have compiled data from microarray analyses. An extensive literature search identified seven published microarray analyses that utilized PCOS samples. These were published between the year of 2003 and 2007 and included analyses of ovary tissues as well as whole ovaries and theca cells. Although somewhat different methods were used, all the studies employed cDNA microarrays to compare the gene expression patterns of PCOS patients with those of healthy controls. These analyses identified more than a thousand genes whose expression was altered in PCOS patients. Most of the genes were found to be involved in gene and protein expression, cell signaling and metabolism. We have classified all of the 1081 identified genes as coding for either known or unknown proteins. Cytoscape 2.6.1 was used to build a network of protein and then to analyze it. This protein network consists of 504 protein nodes and 1408 interactions among those proteins. One hypothetical protein in the PCOS network was postulated to be involved in the cell cycle. BiNGO was used to identify the three main ontologies in the protein network: molecular functions, biological processes and cellular components. This gene ontology analysis identified a number of ontologies and genes likely to be involved in the complex mechanism of PCOS. These include the insulin receptor signaling pathway, steroid biosynthesis, and the regulation of gonadotropin secretion among others.
PMCID: PMC2743649  PMID: 19723303

Results 1-8 (8)