Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Life without Oxygen: Gene Regulatory Responses of the Crucian Carp (Carassius carassius) Heart Subjected to Chronic Anoxia 
PLoS ONE  2014;9(11):e109978.
Crucian carp are unusual among vertebrates in surviving extended periods in the complete absence of molecular oxygen. During this time cardiac output is maintained though these mechanisms are not well understood. Using a high-density cDNA microarray, we have defined the genome-wide gene expression responses of cardiac tissue after exposing the fish at two temperatures (8 and 13°C) to one and seven days of anoxia, followed by seven days after restoration to normoxia. At 8°C, using a false discovery rate of 5%, neither anoxia nor re-oxygenation elicited appreciable changes in gene expression. By contrast, at 13°C, 777 unique genes responded strongly. Up-regulated genes included those involved in protein turnover, the pentose phosphate pathway and cell morphogenesis while down-regulated gene categories included RNA splicing and transcription. Most genes were affected between one and seven days of anoxia, indicating gene regulation over the medium term but with few early response genes. Re-oxygenation for 7 days was sufficient to completely reverse these responses. Glycolysis displayed more complex responses with anoxia up-regulated transcripts for the key regulatory enzymes, hexokinase and phosphofructokinase, but with down-regulation of most of the non-regulatory genes. This complex pattern of responses in genomic transcription patterns indicates divergent cardiac responses to anoxia, with the transcriptionally driven reprogramming of cardiac function seen at 13°C being largely completed at 8°C.
PMCID: PMC4220927  PMID: 25372666
2.  Pathway Analysis of Genetic Factors Associated with Spontaneous Preterm Birth and Pre-Labor Preterm Rupture of Membranes 
PLoS ONE  2014;9(9):e108578.
Pre-term birth (PTB) remains the leading cause of infant mortality and morbidity. Its etiology is multifactorial, with a strong genetic component. Genetic predisposition for the two subtypes, spontaneous PTB with intact membranes (sPTB) and preterm prelabor rapture of membranes (PPROM), and differences between them, have not yet been systematically summarised.
Methods and findings
Our literature search identified 15 association studies conducted in 3,600 women on 2175 SNPs in 274 genes. We used Ingenuity software to impute gene pathways and networks related to sPTB and PPROM. Detailed insight in the defined functional ontologies clearly separated integrated datasets for sPTB and PPROM. Our analysis of upstream regulators of genes suggests that glucocorticoid receptor (NR3C1), peroxisome proliferator activated receptor γ (PPARG) and interferon regulating factor 3 (IRF3) may be sPTB specific. PPROM-specific genes may be regulated by estrogen receptor2 (ESR2) and signal transducer and activator of transcription (STAT1). The inflammatory transcription factor NFκB is linked to both sPTB and PPROM, however, their inflammatory response is distinctly different.
Based on our analyses, we propose an autoimmune/hormonal regulation axis for sPTB, whilst pathways implicated in the etiology of PPROM include hematologic/coagulation function disorder, collagen metabolism, matrix degradation and local inflammation. Our hypothesis generating study has identified new candidate genes in the pathogenesis of PPROM and sPTB, which should be validated in large cohorts.
PMCID: PMC4181300  PMID: 25264875
4.  PNUTS/PP1 Regulates RNAPII-Mediated Gene Expression and Is Necessary for Developmental Growth 
PLoS Genetics  2013;9(10):e1003885.
In multicellular organisms, tight regulation of gene expression ensures appropriate tissue and organismal growth throughout development. Reversible phosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) is critical for the regulation of gene expression states, but how phosphorylation is actively modified in a developmental context remains poorly understood. Protein phosphatase 1 (PP1) is one of several enzymes that has been reported to dephosphorylate the RNAPII CTD. However, PP1's contribution to transcriptional regulation during animal development and the mechanisms by which its activity is targeted to RNAPII have not been fully elucidated. Here we show that the Drosophila orthologue of the PP1 Nuclear Targeting Subunit (dPNUTS) is essential for organismal development and is cell autonomously required for growth of developing tissues. The function of dPNUTS in tissue development depends on its binding to PP1, which we show is targeted by dPNUTS to RNAPII at many active sites of transcription on chromosomes. Loss of dPNUTS function or specific disruption of its ability to bind PP1 results in hyperphosphorylation of the RNAPII CTD in whole animal extracts and on chromosomes. Consistent with dPNUTS being a global transcriptional regulator, we find that loss of dPNUTS function affects the expression of the majority of genes in developing 1st instar larvae, including those that promote proliferative growth. Together, these findings shed light on the in vivo role of the PNUTS-PP1 holoenzyme and its contribution to the control of gene expression during early Drosophila development.
Author Summary
During development, cells rely on appropriate patterns of gene expression to regulate metabolism in order to meet cellular demands and maintain rapid tissue growth. Conversely, dysregulation of gene expression is critical in various disease states, such as cancer, and during ageing. A key mechanism that is ubiquitously employed to control gene expression is reversible phosphorylation, a molecular switch that is used to regulate the activity of the transcriptional machinery. Here we identify an enzyme that binds to and regulates the phosphorylation state of RNA Polymerase II, a central component of the general transcription machinery. We also show that an essential role of this enzyme is to support normal patterns of gene expression that facilitate organismal growth. These findings are not only of relevance to the understanding of normal enzyme function but may also assist in the development of therapeutic strategies for the treatment of aberrant patterns of gene expression that occur during ageing and disease progression.
PMCID: PMC3814315  PMID: 24204300
5.  Library of Apicomplexan Metabolic Pathways: a manually curated database for metabolic pathways of apicomplexan parasites 
Nucleic Acids Research  2012;41(Database issue):D706-D713.
The Library of Apicomplexan Metabolic Pathways (LAMP, is a web database that provides near complete mapping from genes to the central metabolic functions for some of the prominent intracellular parasites of the phylum Apicomplexa. This phylum includes the causative agents of malaria, toxoplasmosis and theileriosis—diseases with a huge economic and social impact. A number of apicomplexan genomes have been sequenced, but the accurate annotation of gene function remains challenging. We have adopted an approach called metabolic reconstruction, in which genes are systematically assigned to functions within pathways/networks for Toxoplasma gondii, Neospora caninum, Cryptosporidium and Theileria species, and Babesia bovis. Several functions missing from pathways have been identified, where the corresponding gene for an essential process appears to be absent from the current genome annotation. For each species, LAMP contains interactive diagrams of each pathway, hyperlinked to external resources and annotated with detailed information, including the sources of evidence used. We have also developed a section to highlight the overall metabolic capabilities of each species, such as the ability to synthesize or the dependence on the host for a particular metabolite. We expect this new database will become a valuable resource for fundamental and applied research on the Apicomplexa.
PMCID: PMC3531055  PMID: 23193253
6.  Exploring the genomic basis of pharmacoresistance in epilepsy: an integrative analysis of large-scale gene expression profiling studies on brain tissue from epilepsy surgery 
Human Molecular Genetics  2011;20(22):4381-4394.
Some patients with pharmacoresistant epilepsy undergo therapeutic resection of the epileptic focus. At least 12 large-scale microarray studies on brain tissue from epilepsy surgery have been published over the last 10 years, but they have failed to make a significant impact upon our understanding of pharmacoresistance, because (1) doubts have been raised about their reproducibility, (2) only a small number of the gene expression changes found in each microarray study have been independently validated and (3) the results of different studies have not been integrated to give a coherent picture of the genetic changes involved in epilepsy pharmacoresistance. To overcome these limitations, we (1) assessed the reproducibility of the microarray studies by calculating the overlap between lists of differentially regulated genes from pairs of microarray studies and determining if this was greater than would be expected by chance alone, (2) used an inter-study cross-validation technique to simultaneously verify the expression changes of large numbers of genes and (3) used the combined results of the different microarray studies to perform an integrative analysis based on enriched gene ontology terms, networks and pathways. Using this approach, we respectively (1) demonstrate that there are statistically significant overlaps between the gene expression changes in different publications, (2) verify the differential expression of 233 genes and (3) identify the biological processes, networks and genes likely to be most important in the development of pharmacoresistant epilepsy. Our analysis provides novel biologically plausible candidate genes and pathways which warrant further investigation to assess their causal relevance.
PMCID: PMC3196887  PMID: 21852245
7.  Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes 
PLoS Genetics  2012;8(8):e1002834.
Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR ( To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led us to suggest that DR commonly suppresses translation, while stimulating an ancient reproduction-related process.
Author Summary
Dietary restriction has been shown to extend lifespan in diverse, evolutionarily distant species, yet its underlying mechanisms remain unknown. We first constructed a database of genes essential for the life-extending effects of dietary restriction in various model organisms and then studied their interactions using a variety of network and systems biology approaches. This enabled us to predict novel genes related to dietary restriction, which we validated experimentally in yeast. By comparing large-scale data compilations (interactomes and transcriptomes) from multiple organisms, we were able to condense this -omics information to the most conserved essential elements, eliminating species-specific adaptive responses. These results lead us to the rather surprising conclusion that lifespan extension by a restricted diet commonly may exploit an ancient rejuvenation process derived from gametogenesis.
PMCID: PMC3415404  PMID: 22912585
8.  Role of Shwachman-Bodian-Diamond syndrome protein in translation machinery and cell chemotaxis: a comparative genomics approach 
Shwachman-Bodian-Diamond syndrome (SBDS) is linked to a mutation in a single gene. The SBDS proinvolved in RNA metabolism and ribosome-associated functions, but SBDS mutation is primarily linked to a defect in polymorphonuclear leukocytes unable to orient correctly in a spatial gradient of chemoattractants. Results of data mining and comparative genomic approaches undertaken in this study suggest that SBDS protein is also linked to tRNA metabolism and translation initiation. Analysis of crosstalk between translation machinery and cytoskeletal dynamics provides new insights into the cellular chemotactic defects caused by SBDS protein malfunction. The proposed functional interactions provide a new approach to exploit potential targets in the treatment and monitoring of this disease.
PMCID: PMC3202468  PMID: 22046100
Shwachman-Bodian-Diamond syndrome; wybutosine; tRNA; chemotaxis; translation; genomics; gene proximity
9.  A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related 
BMC Genomics  2011;12:27.
The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes), for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties.
The main patterns discovered by the classification methods are as follows: (a) the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b) the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO) annotations; (c) GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d) interaction with the XRCC5 (Ku80) protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e) DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related.
The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.
PMCID: PMC3031233  PMID: 21226956
10.  The ERGOTM genome analysis and discovery system 
Nucleic Acids Research  2003;31(1):164-171.
The ERGOTM ( genome analysis and discovery suite is an integration of biological data from genomics, biochemistry, high-throughput expression profiling, genetics and peer-reviewed journals to achieve a comprehensive analysis of genes and genomes. Far beyond any conventional systems that facilitate functional assignments, ERGO combines pattern-based analysis with comparative genomics by visualizing genes within the context of regulation, expression profiling, phylogenetic clusters, fusion events, networked cellular pathways and chromosomal neighborhoods of other functionally related genes. The result of this multifaceted approach is to provide an extensively curated database of the largest available integration of genomes, with a vast collection of reconstructed cellular pathways spanning all domains of life. Although access to ERGO is provided only under subscription, it is already widely used by the academic community. The current version of the system integrates 500 genomes from all domains of life in various levels of completion, 403 of which are available for subscription.
PMCID: PMC165577  PMID: 12519973
11.  Genome Sequence and Analysis of the Oral Bacterium Fusobacterium nucleatum Strain ATCC 25586 
Journal of Bacteriology  2002;184(7):2005-2018.
We present a complete DNA sequence and metabolic analysis of the dominant oral bacterium Fusobacterium nucleatum. Although not considered a major dental pathogen on its own, this anaerobe facilitates the aggregation and establishment of several other species including the dental pathogens Porphyromonas gingivalis and Bacteroides forsythus. The F. nucleatum strain ATCC 25586 genome was assembled from shotgun sequences and analyzed using the ERGO bioinformatics suite ( The genome contains 2.17 Mb encoding 2,067 open reading frames, organized on a single circular chromosome with 27% GC content. Despite its taxonomic position among the gram-negative bacteria, several features of its core metabolism are similar to that of gram-positive Clostridium spp., Enterococcus spp., and Lactococcus spp. The genome analysis has revealed several key aspects of the pathways of organic acid, amino acid, carbohydrate, and lipid metabolism. Nine very-high-molecular-weight outer membrane proteins are predicted from the sequence, none of which has been reported in the literature. More than 137 transporters for the uptake of a variety of substrates such as peptides, sugars, metal ions, and cofactors have been identified. Biosynthetic pathways exist for only three amino acids: glutamate, aspartate, and asparagine. The remaining amino acids are imported as such or as di- or oligopeptides that are subsequently degraded in the cytoplasm. A principal source of energy appears to be the fermentation of glutamate to butyrate. Additionally, desulfuration of cysteine and methionine yields ammonia, H2S, methyl mercaptan, and butyrate, which are capable of arresting fibroblast growth, thus preventing wound healing and aiding penetration of the gingival epithelium. The metabolic capabilities of F. nucleatum revealed by its genome are therefore consistent with its specialized niche in the mouth.
PMCID: PMC134920  PMID: 11889109

Results 1-11 (11)